Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1321 - 1350 of 34523

Full-Text Articles in Physical Sciences and Mathematics

Separation Of Organic Acids Through Direct Catalysis From Sugars, Katelyn Robinson May 2023

Separation Of Organic Acids Through Direct Catalysis From Sugars, Katelyn Robinson

Chemical Engineering Undergraduate Honors Theses

Society relies on plastic products, whether they are single use or durable. A downside of plastic is that the most common type is a product of oil and oil is not only a limited resource but also a climate-damaging resource. Polylactic acid (PLA) is a bio-based, biodegradable plastic. However, the process of converting biomass to polylactic acid polymer has the largest environmental impact of the PLA production process, so alternative methods of conversion are needed (Moretti et al., 2021). The polylactic acid polymer can be made with lactic acid, which can be converted from glucose.


The Novel Chlorination Of Zirconium Metal And Its Application To A Recycling Protocol For Zircaloy Cladding From Spent Nuclear Fuel Rods, Breanna K. Vestal May 2023

The Novel Chlorination Of Zirconium Metal And Its Application To A Recycling Protocol For Zircaloy Cladding From Spent Nuclear Fuel Rods, Breanna K. Vestal

Doctoral Dissertations

A novel protocol has been developed for the chemical removal of zirconium alloy (Zircaloy) cladding from spent nuclear fuel rods and subsequent isolation and purification of nuclear-grade zirconium chloride derived therefrom. This protocol is based on the chemistry developed from two new scientific findings.

First, two new oxidative chlorination reactions have been discovered for zirconium metal. In both solvents, zirconium can be quantitatively chlorinated at temperatures less than 150°C, with the operative equations seen below. In sulfur monochloride, the reaction is completed in 2 – 4 hours via surface etching, exhibiting 0th order kinetic behavior. The elemental sulfur byproduct …


Hydrothermal Synthesis Of Frustrated Lanthanide Pyrochlores And Transition Metal Double Perovskites And Germanates, Matthew S. Powell May 2023

Hydrothermal Synthesis Of Frustrated Lanthanide Pyrochlores And Transition Metal Double Perovskites And Germanates, Matthew S. Powell

All Dissertations

Magnetically frustrated materials hold promise of unique behavior allowing for the novel study of quantum phenomena. Such materials are poised to become an integral foundation for technological advancement in the post-Silicon Age. Crystalline materials are given special focus where the rigid lattice allows more detailed study of these quantized effects and frustration behavior. As opposed to polycrystalline powders, large single crystals can be preferentially aligned enabling the study of anisotropic behavior. Two cubic structure types have garnered significant interest due to their 3-D tetrahedral arrangement of symmetry-related metal centers with the potential for magnetic frustration: pyrochlores and perovskites.

The supercritical …


Designing Noncentrosymmetric Multifunctional Materials, Ebube Oyeka May 2023

Designing Noncentrosymmetric Multifunctional Materials, Ebube Oyeka

All Dissertations

Noncentrosymmetric (NCS) materials with crystal lattices lacking spatial inversion symmetry display a wide range of exciting functionalities. This dissertation covers two classes of functional NCS materials: magnetic skyrmion-host compounds and multifunctional materials. Magnetic skyrmion and multifunctional materials combining optical and magnetic responses are providing avenues for developing and optimizing the performance of electronic devices that can have uses in memory storage, laser technology, medicine, sensors, etc. The formation of skyrmions is driven by asymmetric Dzyaloshinskii–Moriya (DM) interaction facilitated by broken spatial inversion symmetry and large spin-orbit coupling (SOC), while multiple functionalities arise when spin carriers and optical chromophores are optimally …


Novel Pathways To Tailor Charge And Spin In Materials And Investigating The Impact On Sensing And Electrochemical Energy Applications, Aruna Narayanan Nair May 2023

Novel Pathways To Tailor Charge And Spin In Materials And Investigating The Impact On Sensing And Electrochemical Energy Applications, Aruna Narayanan Nair

Open Access Theses & Dissertations

Catalysis is integral to our daily lives, as it streamlines and accelerates numerous chemical reactions essential for producing various materials, fuels, and chemicals. With the rising demand for clean, sustainable energy sources, optimizing catalytic materials and processes becomes increasingly vital. In the realm of renewable energy production, catalysis is crucial for efficiently converting energy from sustainable resources, such as solar, wind, and biomass, into chemical energy stored in fuels or directly into electrical energy.The electronic charge distribution in materials significantly influences their physical and chemical properties, facilitating the development of advanced electronic, optoelectronic, sensing, and energy conversion devices. Since catalysis …


Carbon Dioxide Reduction On Large Area Liquid Metal Gallium-Indium Electrocatalysts, Thomas Hollis May 2023

Carbon Dioxide Reduction On Large Area Liquid Metal Gallium-Indium Electrocatalysts, Thomas Hollis

Chemistry & Biochemistry Undergraduate Honors Theses

Carbon dioxide (CO2) is widely known as a greenhouse gas that contributes to global warming due to the burning of fossil fuels. The carbon dioxide reduction reaction (CO2RR) is widely studied to reutilize CO2 to useful products, including methane, ethane, and carbon monoxide. This project studies the use of liquid metal gallium-indium as an electrocatalyst to perform CO2 reduction to carbon monoxide (CO) or possibly solid carbon in various solutions. Gallium-indium is characterized and studied through its “wetting” properties and adhesion to substrate foil through the measurement of contact angles inside solution. These liquid …


Probing Gas Transport Structure-Property Relationships In Vinyl-Addition Polynorbornenes, Trevor Jonas Wilson May 2023

Probing Gas Transport Structure-Property Relationships In Vinyl-Addition Polynorbornenes, Trevor Jonas Wilson

Doctoral Dissertations

Polynorbornenes are ideal materials for systematic structure-property investigations designed to correlate gas-transport properties to polymer structure. The modular nature of norbornene-derived systems provides a facile route towards the synthesis of diverse polymeric materials, whose structure may be systematically altered through targeted design of monomers, alterations in polymerization mechanism, or some combination of these two strategies. Though many valuable correlations between gas-permeability and polynorbornene structure have been summarized in prior literature, many of these efforts have focused on homopolymer materials with structural changes imposed — almost exclusively — through modifications in substituent chemistry, or through targeted modulation of molar ratios in …


Hydrogel And Soluble Polymers To Support Metal Ion Chemosensors, Rebecca Adel Dominguez May 2023

Hydrogel And Soluble Polymers To Support Metal Ion Chemosensors, Rebecca Adel Dominguez

Theses and Dissertations

Most water systems contain metal ions. Some of these ions, such as lead, arsenic, and mercury, are extremely toxic. It is of great concern when those ions make their way into drinking water. There is a need for a device that can detect small amounts of dissolved metal ions in real-time. The Schwabacher group has designed such a device, based on azo dyes as the chemo sensors that change color in the presence of metal ions. These sensors can detect very small concentrations of metal ions into the parts per billion range. The sensor dyes are connected with covalent bonds …


Utilizing Fluorescent Nanoscale Particles To Create A Map Of The Electric Double Layer, Quintus Owen May 2023

Utilizing Fluorescent Nanoscale Particles To Create A Map Of The Electric Double Layer, Quintus Owen

Theses and Dissertations

The interactions between charged particles in solution and an applied electric field follow several models, most notably the Gouy-Chapman-Stern model, for the establishment of an electric double layer along the electrode, but these models make several assumptions of ionic concentrations and an infinite bulk solution. As more scientific progress is made for the finite and single molecule reactions inside microfluidic cells, the limitations of the models become more extreme. Thus, creating an accurate map of the precise response of charged nanoparticles in an electric field becomes increasingly vital. Another compounding factor is Brownian motion’s inverse relationship with size: large easily …


Low-Cost Microstereolithography 3d Printing With Microfluidic Microsampling Applications, Lauren Twombly May 2023

Low-Cost Microstereolithography 3d Printing With Microfluidic Microsampling Applications, Lauren Twombly

Chemistry & Biochemistry Undergraduate Honors Theses

The growing field of stereolithography 3D printing has welcomed a new age ofmicrofluidic device fabrication techniques. When compared to previous planar fabrication techniques such as soft-lithography, stereolithography 3D printing offers highly automated procedures, reduced fabrication times, and greater complexity of device features. To date, the greatest tradeoff for 3D printing in microfluidic device fabrication is poorer resolution when compared to soft-lithography which can produce feature sizes on the nanometer scale. The poorer resolution of 3D printing limits the feasible size of features. While highly sophisticated 3D printers are capable of achieving sub 10 μm resolution, these instruments are incredibly expensive …


Microwave-Assisted Depolymerization Of Poly (Ethylene Terephthalate) Via Ethanolysis, Mayra Alejandra Gomez Cortez May 2023

Microwave-Assisted Depolymerization Of Poly (Ethylene Terephthalate) Via Ethanolysis, Mayra Alejandra Gomez Cortez

Theses and Dissertations

In the search of providing an alternative form of combating the complex environmental concerns rising from the rapid growth of poly (ethylene terephthalate) waste in the world, this research focused on investigating the chemical recycling of PET via ethanolysis. Parameters such as temperature, reaction time, catalyst usage and concentration were investigated to promote depolymerization.

In this work, ethanolysis of waste PET under microwave irradiation was investigated using organocatalysts 1,5,7-Triazabicyclo [4.4.0] dec5-ene (TBD) and 1,8-Diazabicyclo [5.4.0] underc-7-ene (DBU). We evaluated the effectiveness of reaction conditions through a series of experiments and determined the optimum conditions as follows: 0.5 g of PET, …


The Concept Of Multicenter Bonds In Chemistry And Materials Science, Nikolay V. Tkachenko May 2023

The Concept Of Multicenter Bonds In Chemistry And Materials Science, Nikolay V. Tkachenko

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Chemical bonds are components of a universal and compact language of chemistry that was empirically developed before the modern concepts of quantum physics. This language explains how molecules and solids keep together. In particular, Lewis’s shared electron-pair bonding model may be considered the most successful and generally accepted theory of chemical bonding due to its simplicity and predictive power. However, there is an entire world of chemical species where the classical Lewis bonding language fails to describe the bonding pattern adequately. Those cases include but are not limited to compounds with a significant electron delocalization (where electron density spread on …


Dual Crosslinked Poly(Acrylamide-Co-N-Vinylpyrrolidone) Microspheres With Re-Crosslinking Ability For Fossil Energy Recovery, Jingyang Pu, Baojun Bai, Jiaming Geng, Na Zhang, Thomas P. Schuman May 2023

Dual Crosslinked Poly(Acrylamide-Co-N-Vinylpyrrolidone) Microspheres With Re-Crosslinking Ability For Fossil Energy Recovery, Jingyang Pu, Baojun Bai, Jiaming Geng, Na Zhang, Thomas P. Schuman

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Microspheres have been proposed to be applied in controlling wastewater production for mature oilfields and migrating leakage for gas and nuclear waste storage. However, it remains challenging for stacked microspheres to maintain strong blocking ability in micron-sized small pores or fractures. In this study, a novel microsphere was developed with comprehensive properties including high deformability and long re-crosslinking time upon tunable swelling ratio for the applications. A dual covalent and physical crosslinking strategy was used to develop novel microspheres reinforced by a hydrogen bond (H-bond, between pyrrole ring and amide group) and coordination bond (between chromium acetate (CrAc) and carboxyl …


An Experimental Study Into Tholin's Solubility With Liquid Hydrocarbons On Titan, Katherine Dzurilla May 2023

An Experimental Study Into Tholin's Solubility With Liquid Hydrocarbons On Titan, Katherine Dzurilla

Graduate Theses and Dissertations

Titan’s production of organics in its atmosphere and the liquid hydrocarbon lakes present on its surface make it a prime target for astrobiologists. Many previous studies on laboratory analogs of these organics, called "tholins", have found amino acids, nitriles, and other building blocks necessary for life. The potential solubility of tholins in the lakes of Titan presents an opportunity to create physical and chemical changes within the organics. While the lakes of Titan are primarily comprised of nonpolar compounds (methane and ethane), many predict that very small amounts of polar hydrocarbons are also present. To better understand these processes, researchers …


Dpd Guided Insight On The Formation Process Of Polyethersulfone Membranes By Nonsolvent Induced Phase Separation And The Effects Of Additives, Eric Ledieu May 2023

Dpd Guided Insight On The Formation Process Of Polyethersulfone Membranes By Nonsolvent Induced Phase Separation And The Effects Of Additives, Eric Ledieu

Graduate Theses and Dissertations

Dissipative particle dynamics (DPD), a coarse grain simulation method, was applied to the membrane formation process of non-solvent induced phase separation (NIPS) to gain further insight on the mechanism of certain variables and how they affect the final morphology. NIPS involves two solutions, an organic polymer dissolved in an organic solvent colloquially called the dope and an aqueous coagulation bath, brought into contact with one another. The solvents then mix, causing the polymer to fall out of solution as an asymmetric membrane with a dense surface layer and a more open subsurface layer in response to the decreasing solubility. Polyethersulfone …


Repeated Low-Level Blast Exposure Alters Urinary And Serum Metabolites, Austin Sigler, Jiandong Wu, Annalise Pfaff, Olajide Adetunji, Paul Ki-Souk Nam, Donald James, Casey Burton, Honglan Shi May 2023

Repeated Low-Level Blast Exposure Alters Urinary And Serum Metabolites, Austin Sigler, Jiandong Wu, Annalise Pfaff, Olajide Adetunji, Paul Ki-Souk Nam, Donald James, Casey Burton, Honglan Shi

Chemistry Faculty Research & Creative Works

Repeated exposure to low-level blast overpressures can produce biological changes and clinical sequelae that resemble mild traumatic brain injury (TBI). While recent efforts have revealed several protein biomarkers for axonal injury during repetitive blast exposure, this study aims to explore potential small molecule biomarkers of brain injury during repeated blast exposure. This study evaluated a panel of ten small molecule metabolites involved in neurotransmission, oxidative stress, and energy metabolism in the urine and serum of military personnel (n = 27) conducting breacher training with repeated exposure to low-level blasts. The metabolites were analyzed using HPLC—tandem mass spectrometry, and the Wilcoxon …


Design Of A Hyperstable Endocrine Acting Fibroblast Growth Factot, Sara Armstrong May 2023

Design Of A Hyperstable Endocrine Acting Fibroblast Growth Factot, Sara Armstrong

Chemistry & Biochemistry Undergraduate Honors Theses

A novel chimera protein, consisting of the C-terminus of Fibroblast Growth Factor (FGF) 21 and super FGF1, a mutant of the wild-type FGF1, was studied. The protein retained the stability of sFGF1 and the endocrine acting behaviors and binding efficiency of FGF21, so that it could be more practical for therapeutic uses as a wound healing and angiogenic agent. sFGF1- FGF21 was expressed and purified before utilizing various biophysical techniques to measure its stability, secondary and tertiary characteristics, and metabolic activity.


Detection Of Nitrogen Dioxide Via Graphene-Enhanced Raman Scattering, Spencer Hazeslip May 2023

Detection Of Nitrogen Dioxide Via Graphene-Enhanced Raman Scattering, Spencer Hazeslip

Chemistry & Biochemistry Undergraduate Honors Theses

This paper presents the development of a nitrogen dioxide (NO2) sensor that utilizes the phenomenon of graphene-enhanced Raman scattering (GERS). The sensor consists of monolayer graphene on a silicon wafer, functionalized noncovalently with Copper(II) 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (CuTTPc) via the solution soaking method. A custom sensing chamber was constructed to enable Raman spectra to be collected during NO2 exposure. The response of the sensor was found to be linear between 10 and 100 ppm NO2, indicating that it could be used for both detection and quantification. Furthermore, the sensor was shown to be reusable after …


Impact Of The Pre-A Motif On Truncated Hemoglobin N Activity, Alexander Shayne Drena May 2023

Impact Of The Pre-A Motif On Truncated Hemoglobin N Activity, Alexander Shayne Drena

Theses and Dissertations

Tuberculosis (TB) remains the leading cause of death by an infectious agent and therefore a global health crisis, according to the most recent report by the World Health Organization. This is due, in part, to Mycobacterium tuberculosis’ impressive defensive mechanisms against immune response, as well as the rise of Multi-Drug Resistant strains that have recently developed. Towards the turn of the century, a small heme protein called truncated hemoglobin N (trHbN) was discovered to protect the bacteria against reactive nitrogen species by converting nitric oxide (NO) to nitrate at rates far exceeding those of myoglobin and closer to those of …


Quantitative Analysis Of The Proteomic Selectivity Of Acidic Reductive Alkylation Of Peptides, Connor Jewell May 2023

Quantitative Analysis Of The Proteomic Selectivity Of Acidic Reductive Alkylation Of Peptides, Connor Jewell

Honors Scholar Theses

Proteome quantification is a complicated process which takes on many methods, usually involving peptide derivatization and complex mass spectral analysis. Scores of techniques have been utilized to address issues of incomplete quantification. The implementation of IPTL labeling, or isobaric peptide terminal labeling, is a recent addition to the literature, which exploits the supposedly selective labeling of N-termini of tryptic peptides from the C-termini of lysine residues due to differences in basicity. This method has been shown to improve quantitation by reducing spectral complexity and provide more accurate and reproducible results on peptide abundance. Investigations into the selectivity of terminal derivatization …


The Fierce Urgency Of Now: Integrating The Youth Voice At Cop, Gillian Bowser, Pamela H. Templer, Susie S. Ho, Sarah A. Green, Sarah Hautzinger, Isabelle Zhu-Maguire, Alyssa Connaughton, Leah Dundon, Diane Husic, Mark Urban May 2023

The Fierce Urgency Of Now: Integrating The Youth Voice At Cop, Gillian Bowser, Pamela H. Templer, Susie S. Ho, Sarah A. Green, Sarah Hautzinger, Isabelle Zhu-Maguire, Alyssa Connaughton, Leah Dundon, Diane Husic, Mark Urban

Michigan Tech Publications

No abstract provided.


Modeling Surface Structures For The Capture Of Carbon Dioxide, Paige Freyre May 2023

Modeling Surface Structures For The Capture Of Carbon Dioxide, Paige Freyre

Honors Theses

Our research utilized a modified graphene surface model to simulate capture of carbon dioxide and nitrogen gas based on van der Waals forces and hydrogen bonding. We completed an extensive review of the literature for model and experimental surfaces used to trap carbon dioxide and nitrogen gas into structures and pores with varying functional groups, pore sizes, and pore structures. We replicated the design of selected published models and compared their and our calculated binding energies. We used Scigress (Fujitsu) software with the Molecular Mechanics MM3 parameter set to perform calculations to analyze a proposed graphene surface pore lined with …


Non-Destructive Imaging Of Phytosulfokine Trafficking In Plants Using Fiber-Optic Fluorescence Microscopy, Bernard Abakah May 2023

Non-Destructive Imaging Of Phytosulfokine Trafficking In Plants Using Fiber-Optic Fluorescence Microscopy, Bernard Abakah

Electronic Theses and Dissertations

Plants secrete peptide ligands and use receptor signaling to respond to stress and control development. Understanding these phenomena is key to improving plant health and productivity for food, fiber, and energy applications. Phytosulfokine (PSK), a sulfated peptide hormone, regulates plant cell division, growth, and stress tolerance via specific phytosulfokine receptors (PSKRs). This study uses fiber-optic fluorescence microscopy to elucidate trafficking of PSK in live plants. The microscope features two-color optics and an objective lens connected to a 1-m coherent imaging fiber mounted on either a conventional upright microscope body or 5-axis positioning system (X–Y–Z plus pitch and yaw). PSK and …


Battery Design, Construction, And Characterization For Small Motor Use Focusing On Anodic Zinc For Electron Flow, Amber Veach May 2023

Battery Design, Construction, And Characterization For Small Motor Use Focusing On Anodic Zinc For Electron Flow, Amber Veach

Chemical Engineering Undergraduate Honors Theses

This thesis explores the construction, characterization, and application of anodic zinc batteries for powering a small electric motor for the ChemE Car competition. Two zinc galvanic cell batteries were studied: zinc-carbon and zinc-air batteries. Prototype batteries were constructed and tested for voltage, amperage, and power production. In the zinc-carbon trials, a 3:1 mixture of manganese dioxide and graphite was determined to be the best cathode for power production. The size which allowed for sufficient power while maintaining the smallest footprint on the car was a zinc can six cm tall and two cm in diameter. Analysis of paper zinc-air battery …


Rational Design, Synthesis And Biology Of Immunostimulatory Peptides, Nelson Casanova May 2023

Rational Design, Synthesis And Biology Of Immunostimulatory Peptides, Nelson Casanova

Seton Hall University Dissertations and Theses (ETDs)

This dissertation reports the design, synthesis, characterization, and biological studies of three uniquely structured peptides, derived from ubiquitinated multiple myeloma proteins and ubiquitinated B7H6 ligand. The peptides were made into linear or branched shapes, with the branched peptides containing both major histocompatibility complex (MHC) class two and NKp30 binding motifs properties in one peptide. This results in an immunocytotoxic response (via cytokines and chemokines) of both natural killer cells and cytotoxic T lymphocytes (CTLs). These shapes were determined for data comparison but also to increase cytokine proliferation, the shapes help with healthy cell aviation. Thus, the linear monomer (contains a …


Developing Methods For Pattern Transfer In Photoelectrochemical Lithography, Ashlyn Descarpentrie May 2023

Developing Methods For Pattern Transfer In Photoelectrochemical Lithography, Ashlyn Descarpentrie

Chemistry & Biochemistry Undergraduate Honors Theses

The microprocessor industry has historically been driven by the goal of shrinking devices. To create features small enough to fit on such devices, photolithography has conventionally been used in the micropatterning of noble metal surfaces. Photolithography is a complicated and expensive process that involves a cleanroom, metallization processes, and photoresist. While this investment makes sense for high revenue applications, a number of microelectronic devices do not require nanometer-scale patterned features. Examples of such applications include specific types of antennae, sensing electrodes, and photocatalysts. Photolithography for these devices is thus too costly in both money and energy. The Coridan lab has …


Synthesis Of A Phenyl Substituted Zinc Dipyrrin Complex For The Purpose Of Analyzing Aromatic Substitutions On The Characteristics Of Compounds Of This Class, Kole Owen May 2023

Synthesis Of A Phenyl Substituted Zinc Dipyrrin Complex For The Purpose Of Analyzing Aromatic Substitutions On The Characteristics Of Compounds Of This Class, Kole Owen

Undergraduate Honors Theses

The field of photochemistry is as innovative in development as it is broad in application. However, utilization of energy from the sun’s electromagnetic radiation remains secondary to the combustion of fossil fuels for the global energy consumption. This is neither a sustainable nor renewable system, and it has contributed to a major decline in the health of our global environment as the greenhouse gases emission has led to an incline in global temperatures and ocean acidity. To develop effective ways to utilize solar energy, experimental effort is being directed towards the understanding of photosensitizers, molecules which absorb solar radiation and …


Microwave Synthesis Of Carbon Dot Nanoparticles, Hayden Ferguson May 2023

Microwave Synthesis Of Carbon Dot Nanoparticles, Hayden Ferguson

Undergraduate Honors Theses

This study aimed to improve the known microwave method to produce carbon dot nanoparticles from ethylenediamine and citric acid. Carbon dots have recently gained much attention as they have diverse applications, such as bioimaging and drug delivery reagents as cancer theranostics. Research was focused on establishing the ideal time for the synthetic reaction to produce carbon dot nanoparticles with the microwave method. After several trials, the 16-minute trial provided the best results based on Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, fluorescence spectroscopy, and ultraviolet exposure.


Development Of Artificial Lipids For Metal Ion-Responsive Liposomes And Related Medicinal Applications, Ruhani Sagar May 2023

Development Of Artificial Lipids For Metal Ion-Responsive Liposomes And Related Medicinal Applications, Ruhani Sagar

Doctoral Dissertations

Liposomes are synthetic vesicles made of phospholipids that are effective for wide-ranging applications in drug delivery and studying biological membranes. Understanding and controlling membrane properties such as fluidity and permeability is crucial for designing liposomes for specific biomedical applications. Pathological changes in these properties can also help us gain insights into disease mechanisms and develop effective treatments. In this dissertation, we describe the design, synthesis, and study of several lipid analogs for a range of applications including liposome triggered cargo release and therapeutic treatment related to lipids.

In Chapters 2-3, we developed smart liposome platforms that can respond to changes …


Peripheral Blood Mononuclear Cell Mitochondrial Dysfunction In Acute Alcohol-Associated Hepatitis, Annette Bellar, Nicole Welch, Jaividhya Dasarathy, Amy Attaway, Ryan Musich, Avinash Kumar, Jinendiran Sekar, Saurabh Mishra, Yana I. Sandlers, Et. Al May 2023

Peripheral Blood Mononuclear Cell Mitochondrial Dysfunction In Acute Alcohol-Associated Hepatitis, Annette Bellar, Nicole Welch, Jaividhya Dasarathy, Amy Attaway, Ryan Musich, Avinash Kumar, Jinendiran Sekar, Saurabh Mishra, Yana I. Sandlers, Et. Al

Chemistry Faculty Publications

Background: Patients with acute alcohol-associated hepatitis (AH) have immune dysfunction. Mitochondrial function is critical for immune cell responses and regulates senescence. Clinical translational studies using complementary bioinformatics-experimental validation of mitochondrial responses were performed in peripheral blood mononuclear cells (PBMC) from patients with AH, healthy controls (HC), and heavy drinkers without evidence of liver disease (HD).
Methods: Feature extraction for differentially expressed genes (DEG) in mitochondrial components and telomere regulatory pathways from single-cell RNAseq (scRNAseq) and integrated 'pseudobulk' transcriptomics from PBMC from AH and HC (n = 4 each) were performed. After optimising isolation and processing protocols for functional studies in …