Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 751 - 780 of 34518

Full-Text Articles in Physical Sciences and Mathematics

Enhanced Mechanical Strength Of Soybean Oil-Based Non-Isocyanate Polyurethane Adhesive For Wood Application By Introducing Nanofillers, Vatsal Chaudhari Dec 2023

Enhanced Mechanical Strength Of Soybean Oil-Based Non-Isocyanate Polyurethane Adhesive For Wood Application By Introducing Nanofillers, Vatsal Chaudhari

Electronic Theses & Dissertations

Polyurethane (PU) is a versatile material that finds extensive use in various industries including bedding, construction, automotive, and packaging. Historically, this particular polymer relied significantly on petrochemical resources, a practice that was considered to have negative environmental impacts. The conventional method for preparing PU involves the use of isocyanate, which is a disadvantage due to its negative impact on the environment and human health. The resolution of this problem entails identifying an appropriate substitute for petroleum-derived products that minimize their impact on both the environment and human health. The researchers earlier utilized soybean oil, for the formulation of PUs in …


Exploring Soybean Oil-Based Polyol And Effect Of Non-Halogenated Flame Retardants In Rigid Polyurethane Foam, Sahithi Kondaveeti Dec 2023

Exploring Soybean Oil-Based Polyol And Effect Of Non-Halogenated Flame Retardants In Rigid Polyurethane Foam, Sahithi Kondaveeti

Electronic Theses & Dissertations

To address the increasing demand for sustainable biomaterials due to the depletion of fossil fuel resources and growing environmental concerns, a new type of biodegradable and environmentally friendly rigid polyurethane foam (RPUF) has been synthesized. These foams are derived from chemically modified soybean oil-based polyol obtained from soybean oil by epoxidation followed by a ring-opening reaction. Polyurethane foam is generally used in construction, furniture, and automobile industries but is highly flammable and releases toxic gases and smoke during combustion. In this study, a highly efficient synergistic effect halogen-free flame-retardant (FR) melamine salt, 2-carboxyethyl(phenyl)phosphinic acid melamine salt (CMA) was synthesized from …


Investigation Of Zinc And Iron In Wildflower Honey, Savannah Simpson Dec 2023

Investigation Of Zinc And Iron In Wildflower Honey, Savannah Simpson

Honors Theses

Honey acts as a valuable food source for both animals and humans. When found in contaminated environments, there is an increased likelihood that honey samples will have high metal concentrations. It has been discovered that honey concentrations in metals can be different based on location. This experiment aims to determine the amount of two valuable metals, zinc, and iron, in various honey sources. These metals can be important to the human body because they help boost immunity and allow the body to carry out the functions required for survival. However, if these elements are present in copious quantities, then it …


Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman Dec 2023

Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman

Electronic Theses and Dissertations

The use of metal-oxide nanoparticles adsorbents is limited to fixed-bed columns in industrial-scale water treatment applications. This limitation is commonly attributed to the tendency of nanoparticles to aggregate, the use of non-sustainable and inefficient polymeric resins as supporting materials, or a lack of adsorption capacity. Foams and aerogels derived from cellulose nanomaterials have unique characteristics, such as high porosity and low density, which enables their use in a variety of environmental applications, including water treatment. However, the overall use of cellulose nanomaterial-based foams in various environmental sectors is limited due to the high cost of production associated with time- and …


Optimization Of Transition-Metal Inclusive Carbon Aerogels For Electrochemical Energy Applications, Allen Dalton Davis Dec 2023

Optimization Of Transition-Metal Inclusive Carbon Aerogels For Electrochemical Energy Applications, Allen Dalton Davis

Electronic Theses & Dissertations

The ever-growing need for energy alongside rising concerns for climate change demands the development of renewable energy technologies. Hydrogen fuel cells are a promising technology that can serve to either supplement energy generation or act as a lone power source. Yet for these devices to be truly green, the hydrogen that serves as fuel must be procured from a renewable resource. Electrolytic water splitting is a process that allows for the dissociation of water into H2 and O2. For this process to be practical, the electrolyzer needs to demonstrate high efficiency and stability, as well as a …


Microplate-Like Metal Pyrophosphate Engineered On Ni-Foam Towards Multifunctional Electrode Material For Energy Conversion And Storage, Rishabh Srivastava Dec 2023

Microplate-Like Metal Pyrophosphate Engineered On Ni-Foam Towards Multifunctional Electrode Material For Energy Conversion And Storage, Rishabh Srivastava

Electronic Theses & Dissertations

High clean energy demand, dire need for sustainable development, and low carbon footprints are the few intuitive challenges, leading researchers to aim for research and development for high-performance energy devices. The development of materials used in energy devices is currently focused on enhancing the performance, electronic properties, and durability of devices. Tunning the attributes of transition metals using pyrophosphate (P2O7) ligand moieties can be a promising approach to meet the requirements of energy devices such as water electrolyzers and supercapacitors, although such a material’s configuration is rarely exposed for this purpose of study.

Herein, we grow …


Celestial Bodies, Rebecca L. Rand, Mark Popinchalk Dec 2023

Celestial Bodies, Rebecca L. Rand, Mark Popinchalk

Capstones

Most of us will never come close to touching space. But space touches us every day. On Celestial Bodies, journalist Rebecca Rand and astronomer Mark Popinchalk explore the ways outer space interacts with life on earth.

In Episode 1, hosts Rebecca Rand and Mark Popinchalk explore how, for millions of years, trees have been recording celestial events in space. Within the rings of their trunks, trees store radiation from solar flares, supernovae, and changes in the earth’s magnetic field. The hosts talk to Dr. Ben Pope to learn more about what we can discover by looking at radioactive molecules …


Mutational Analysis Of The Nitrogenase Carbon Monoxide Protective Protein Cown Reveals That A Conserved C‑Terminal Glutamic Acid Residue Is Necessary For Its Activity, Dustin L. Willard, Joshuah J. Arellano, Mitch Underdahl, Terrence M. Lee, Avinash S. Ramaswamy, Gabriella Fumes, Agatha Kliman, Emily Y. Wong, Cedric P. Owens Dec 2023

Mutational Analysis Of The Nitrogenase Carbon Monoxide Protective Protein Cown Reveals That A Conserved C‑Terminal Glutamic Acid Residue Is Necessary For Its Activity, Dustin L. Willard, Joshuah J. Arellano, Mitch Underdahl, Terrence M. Lee, Avinash S. Ramaswamy, Gabriella Fumes, Agatha Kliman, Emily Y. Wong, Cedric P. Owens

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Nitrogenase is the only enzyme that catalyzes the reduction of nitrogen gas into ammonia. Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Many nitrogen fixing bacteria protect nitrogenase from CO inhibition using the protective protein CowN. This work demonstrates that a conserved glutamic acid residue near the C-terminus of Gluconacetobacter diazotrophicus CowN is necessary for its function. Mutation of the glutamic acid residue abolishes both CowN’s protection against CO inhibition and the ability of CowN to bind to nitrogenase. In contrast, a conserved C-terminal cysteine residue is not important for CO protection by CowN. Overall, this work …


Differentiation Of Human, Dog, And Cat Hair Fibers Using Dart Tofms And Machine Learning, Laura Ahumada, Erin R. Mcclure-Price, Chad Kwong, Edgard O. Espinoza, John Santerre Dec 2023

Differentiation Of Human, Dog, And Cat Hair Fibers Using Dart Tofms And Machine Learning, Laura Ahumada, Erin R. Mcclure-Price, Chad Kwong, Edgard O. Espinoza, John Santerre

SMU Data Science Review

Hair is found in over 90% of crime scenes and has long been analyzed as trace evidence. However, recent reviews of traditional hair fiber analysis techniques, primarily morphological examination, have cast doubt on its reliability. To address these concerns, this study employed machine learning algorithms, specifically Linear Discriminant Analysis (LDA) and Random Forest, on Direct Analysis in Real Time time-of-flight mass spectra collected from human, cat, and dog hair samples. The objective was to develop a chemistry- and statistics-based classification method for unbiased taxonomic identification of hair. The results of the study showed that LDA and Random Forest were highly …


Engineering Exosomes To Specifically Target The Mitochondria Of Brain Cells, Xin Yan, Xinqian Chen, Zhiying Shan, Lanrong Bi Dec 2023

Engineering Exosomes To Specifically Target The Mitochondria Of Brain Cells, Xin Yan, Xinqian Chen, Zhiying Shan, Lanrong Bi

Michigan Tech Publications, Part 2

Mitochondrial dysfunction is associated with various health conditions, including cardiovascular and neurodegenerative diseases. Mitochondrial-targeting therapy aims to restore or enhance mitochondrial function to treat or alleviate these conditions. Exosomes, small vesicles that cells secrete, containing a variety of biomolecules, are critical in cell-to-cell communication and have been studied as potential therapeutic agents. Exosome-based therapy has the potential to treat both cardiovascular and neurodegenerative diseases. Combining these two approaches involves using exosomes as carriers to transport mitochondrial-targeting agents to dysfunctional or damaged mitochondria within target cells. This article presents a new technique for engineering brain-derived exosomes that target mitochondria and has …


Engineering Exosomes To Specifically Target The Mitochondria Of Brain Cells, Xin Yan, Xinqian Chen, Zhiying Shan, Lanrong Bi Dec 2023

Engineering Exosomes To Specifically Target The Mitochondria Of Brain Cells, Xin Yan, Xinqian Chen, Zhiying Shan, Lanrong Bi

Michigan Tech Publications, Part 2

Mitochondrial dysfunction is associated with various health conditions, including cardiovascular and neurodegenerative diseases. Mitochondrial-targeting therapy aims to restore or enhance mitochondrial function to treat or alleviate these conditions. Exosomes, small vesicles that cells secrete, containing a variety of biomolecules, are critical in cell-to-cell communication and have been studied as potential therapeutic agents. Exosome-based therapy has the potential to treat both cardiovascular and neurodegenerative diseases. Combining these two approaches involves using exosomes as carriers to transport mitochondrial-targeting agents to dysfunctional or damaged mitochondria within target cells. This article presents a new technique for engineering brain-derived exosomes that target mitochondria and has …


Oxidation Of Ethanolamine By Potassium Permanganate In The Presence And Absence Of Sodium Dodecyl Sulphate: A Kinetic Study In An Acidic Medium, Dayo Latona Dec 2023

Oxidation Of Ethanolamine By Potassium Permanganate In The Presence And Absence Of Sodium Dodecyl Sulphate: A Kinetic Study In An Acidic Medium, Dayo Latona

Makara Journal of Science

The kinetics of ethanolamine oxidation by acidified KMnO4 was investigated in the absence and presence of sodium dodecyl sulfate (SDS) was investigated using a pseudo-first-order kinetics approach, with [ethanolamine]o >> [KMnO4]o. The measurements were conducted at λmax = 525 nm using an ultraviolet/visible-1800 Shimadzu spectrophotometer. The stoichiometry showed that 2 moles of KMnO4 were consumed by 5 moles of ethanolamine in the aqueous medium. The reaction orders in both the aqueous and micellar media remained the same with a first-order dependence on [KMnO4] and [ethanolamine] and a fractional-order dependence on [H …


An Inkjet-Printed Graphene Oxide–Poly(3,4-Ethylenedioxythiophene) Poly(Styrene Sulfonate) Electrode For Nitrite Detection In Water, Budi Riza Putra, Weni Anindya, Mohamad Rafi, Ika Kartika, Yudi Nugraha Thaha, Aga Ridhova, Wulan Tri Wahyuni Dec 2023

An Inkjet-Printed Graphene Oxide–Poly(3,4-Ethylenedioxythiophene) Poly(Styrene Sulfonate) Electrode For Nitrite Detection In Water, Budi Riza Putra, Weni Anindya, Mohamad Rafi, Ika Kartika, Yudi Nugraha Thaha, Aga Ridhova, Wulan Tri Wahyuni

Makara Journal of Science

In this study, a screen-printed electrode (SPE) for nitrite (NO2) sensing was fabricated through an inkjet printing technique using a commercial printer machine and preparing an ink composite solution containing graphene oxide (GO) and poly(3,4 ethylenedioxythiophene) poly(styrene sulfonate) (PEDOT:PSS) as conductive materials. The optimum ink materials for SPE fabrication comprised GO and PEDOT:PSS with binders that resemble the viscosity of commercial ink. The surface topography of the fabricated SPE, which was characterized using scanning electron microscopy and atomic force microscopy, showed a smoother surface compared to the commercial screen-printed carbon electrode, with conductive ink materials deposited primarily …


Creating A Three Dimensional Ngss Aligned Unit On Motion And Energy For Middle Grades Students, Spencer M. Rudie Dec 2023

Creating A Three Dimensional Ngss Aligned Unit On Motion And Energy For Middle Grades Students, Spencer M. Rudie

Honors Capstones

A study was conducted to see how the attitudes of middle school aged students would change with respect to science and engineering before and after participating in a ten-lesson unit. Students from the Barb City STEAM team (n=5) participated in the unit and attitudes assessment The unit was based on the principles of motion and energy, concluding with an engineering challenge where the students analyzed the motion and energy of a mousetrap powered car that they built from common craft materials. Their attitudes were assessed before and after the unit with seven questions using a five-point Likert scale, and the …


Synthesis Of Novel Disulfide Triazole Organophosphate Containing Fire Retardants, Parsa Asaei, Jun Yong Kang Dec 2023

Synthesis Of Novel Disulfide Triazole Organophosphate Containing Fire Retardants, Parsa Asaei, Jun Yong Kang

Undergraduate Research Symposium Posters

Fire Retardants (FR) play a pivotal role in reducing smoke plume generation in wildland fires, which coincides with one of NSF EPSCoR’s HDRFS project objectives: investigating smoke plume dynamics. With the San Antonio Statement from 2010 banning halogenated FRs, there has been a push in research towards safer and better alternatives. The synthesis of a novel disulfide triazole organophosphate fire retardant (DSTP) would aid in NSF EPSCoR’s HDRFS research as a greener and better alternative. Therefore, our research aimed to i) develop a novel FR that harnesses the synergistic effects of phosphate-, disulfide-, and triazole-functionality that can be applied to …


Soft Microreactors For The Deposition Of Microstructures And The Related Surface Chemistries Of Polymeric Materials, Jessica Wagner Dec 2023

Soft Microreactors For The Deposition Of Microstructures And The Related Surface Chemistries Of Polymeric Materials, Jessica Wagner

Dissertations and Doctoral Documents from University of Nebraska-Lincoln, 2023–

The precise control over small volumes of liquids is of great interest to various fields such as biotechnology, drug development, and diagnostics. Working at small scales reduces cost, time, and waste, which is why microfluidic lab – on – chip technologies have become popular in a wide range of industries and applications. Additionally, there are differences in properties such as mass transport and heat dissipation at the micron scale compared to in bulk. Microfluidic devices contain several interfaces to consider when preparing to fabricate devices. The substrate/device, substrate/solution, and solution/device interfaces are all of importance and must carefully be tuned …


Thermocatalytic Plasma-Assisted Dry Reforming Of Methane Over Ni/Al2o3 Catalyst, Tyler Wong Dec 2023

Thermocatalytic Plasma-Assisted Dry Reforming Of Methane Over Ni/Al2o3 Catalyst, Tyler Wong

Seton Hall University Dissertations and Theses (ETDs)

Plasma catalysis is an advantageous approach that combines the effects of plasma with the enhancements of a catalyst. By utilizing a nickel catalyst in the plasma discharge zone of a dielectric barrier discharge (DBD), it can give an enhancement to the electrical field, boost microdischarges, and increase conversion and selectivity rates of CH4 and CO2 in the dry reforming of methane (DRM) reaction.

Industrial application of nickel catalysts in DBD Plasma DRM process are limited by poor stability, which is caused by the sintering of active metal particles and coke deposition on the catalyst surface. In this work, …


Hydrogen Bond Activation Of Donor Acceptor Cyclopropanes, Matthew H.J. Pamenter Dec 2023

Hydrogen Bond Activation Of Donor Acceptor Cyclopropanes, Matthew H.J. Pamenter

Electronic Thesis and Dissertation Repository

Donor acceptor cyclopropanes (DACs) are versatile organic building blocks used in the synthesis of many pharmaceutically relevant heterocycles. The combination of a high ring strain cyclopropane core and vicinal donor and acceptor substituents cause DACs to behave like 1,3-zwitterions. Recently, DACs have been activated by a hydrogen bond donor solvent in place of a Lewis acid catalyst, allowing the elimination of heavy metals commonly used in these transformations. Hexafluoroisopropanol (HFIP) as a hydrogen bond donor cosolvent was found to cause a downfield shift of the DACs electrophilic carbon in the 13C NMR spectrum. This indicates increased electrophilicity at this position …


Material Formulation And Process Optimization Towards Fabricating Robust 3d Printed Structures, Austin Riggins Dec 2023

Material Formulation And Process Optimization Towards Fabricating Robust 3d Printed Structures, Austin Riggins

Doctoral Dissertations

This dissertation focuses on understanding and addressing the fundamental physicochemical phenomena that lead to weak interfaces and structural warpage in material extrusion 3D printing. Polymeric feedstocks used for this manufacturing technique were manipulated through the incorporation of additives that alter the dynamics of the matrix during and after printing. In Chapter II, adhesion between layers of structures printed from PEEK was strengthened through a combination of low-molecular weight additive incorporation and post-printing thermal annealing. Chapter III reports a method for decreasing the irreversible thermal strain of structures printed from poly(lactic acid) by introducing nanographene and photoinitiator additives into the feedstock …


Integration Of Raman Spectroscopy And Python-Based Data Analysis For Advancing Neurobiological Research, Natalie E. Dunn Dec 2023

Integration Of Raman Spectroscopy And Python-Based Data Analysis For Advancing Neurobiological Research, Natalie E. Dunn

Doctoral Dissertations

The field of Raman spectroscopy continues to expand into biological applications due to its usefulness as a non-invasive technique that can be utilized qualitatively and quantitatively. However, the inherent weakness of Raman scattering leads to the need for each collected spectra to undergo a preprocessing step to remove noise, background drift, and cosmic rays. Biological research in particular needs large datasets due to the increased variability in samples. As datasets grow, the need to perform preprocessing on each individual spectra becomes daunting. Often, these steps are done by hand with the help of specialized software programs. Preprocessing can be accelerated …


Sterically Encumbering Ligands For The Synthesis And Stabilization Of Iron Nitride And Iron Oxo Compounds, Asiel Mena Dec 2023

Sterically Encumbering Ligands For The Synthesis And Stabilization Of Iron Nitride And Iron Oxo Compounds, Asiel Mena

Open Access Theses & Dissertations

The study of iron-nitrides has been found to be very attractive due to their potential role in processes like Haber-Bosch and nitrogen fixation by nitrogenase. The role of iron-nitrides in these processes is yet not well understood, and the fact that only handful of terminal iron-nitrides have been isolated or spectroscopically detected motivates us to study this type of systems, since much remains to be learned about the electronic and structural factors that affect the chemistry of the Feâ?¡N bond. Recently in our group, by using a super-bulky guanidinate ligand (LAr*), the obtention of an iron-nitride ([LAr*]FeN(py) (LAr* = (Ar*N)2C(NCtBu2), …


Computation-Assisted Molecular Discovery For Biomedical Applications: Seeking Small Molecules And Dna Sequences With High Affinity Target Binding, Payam Kelich Dec 2023

Computation-Assisted Molecular Discovery For Biomedical Applications: Seeking Small Molecules And Dna Sequences With High Affinity Target Binding, Payam Kelich

Open Access Theses & Dissertations

Binding affinity between two molecules is an essential property in drug and sensor discovery. Several computational and experimental methods exist to find molecules with high binding affinities to desired target molecules. These methods are often complementary, where fast computational methods can be used for the initial screening of molecules, and experimental methods can then screen and determine the molecules of interest and sometimes define the structures of bound complexes. After these steps, computational methods, like molecular dynamics (MD) simulations, can provide detailed insights into atomic interactions and binding, and machine learning approaches can analyze experiment-derived data to discern patterns and …


Hydrothermal Synthesis Of First-Row Transition Metal Polyanions Towards The Design Of Frustrated Magnetic Materials, Megan Smart Dec 2023

Hydrothermal Synthesis Of First-Row Transition Metal Polyanions Towards The Design Of Frustrated Magnetic Materials, Megan Smart

All Dissertations

Novel modern materials are constantly being discovered as humanity seeks constantly better improvement to the optics and electronics around us, from lasers used in medical therapies to the magnets and supercomputing chips in our phones. Inorganic oxides commonly draw inspiration from naturally occurring minerals to template new discoveries through substitution of similarly behaving elements with the goal of inducing certain desired properties, such as ferroelectricity or creating the elusive quantum spin liquid. While many minerals are silicates, its periodic table neighbor germanium(IV) has a rich and under-explored crystal chemistry that could contain many new structures and magnetic materials. Another common …


Green Analytical Methods For The Determination Of Perfluorocarboxylic Acids (Pfcas) And Fluorotelomer Alcohols (Ftohs) In Water, Ahsan Habib Dec 2023

Green Analytical Methods For The Determination Of Perfluorocarboxylic Acids (Pfcas) And Fluorotelomer Alcohols (Ftohs) In Water, Ahsan Habib

Open Access Theses & Dissertations

Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic organic compounds manufactured for their heat, water, and stain-resistant properties. PFAS can be found ubiquitously in the environment because they are widely used in everyday consumer products such as fast-food wrappers, non-stick cookware, stain-resistant products, cosmetics, aqueous film-forming foams, etc. As a result, PFAS are commonly detected in surface water, wastewater, and biosolids from wastewater treatment plants (WWTPs). These are the direct sources of PFAS contamination in drinking water supplies, which are substantial sources of human exposure. Among these PFAS chemicals, two major groups are perfluoroalkyl carboxylic acids (PFCAs) …


Development Of A Methodology For The Quantification Of Reaerosolization Of A Biological Contaminate Surrogate Particle From A Military Uniform Fabric, George Cooksey, Jeremy M. Slagley, Casey W. Cooper, Douglas Lewis, Alisha Helm Dec 2023

Development Of A Methodology For The Quantification Of Reaerosolization Of A Biological Contaminate Surrogate Particle From A Military Uniform Fabric, George Cooksey, Jeremy M. Slagley, Casey W. Cooper, Douglas Lewis, Alisha Helm

Faculty Publications

In a mass casualty medical evacuation after a bioaerosol (BA) dispersal event, a decontamination (DC) method is needed that can both decontaminate and prevent biological particle (BP) re-aerosolization (RA) of contaminated clothes. However, neither the efficacy of current DC methods nor the risk of BP RA is greatly explored in the existing literature. The goals of this study were to develop a repeatable method to quantify the RA of a biological contaminant off military uniform fabric swatches and to test the efficacy of one DC protocol (high-volume, low-pressure water) using 1 µm polystyrene latex (PSL) spheres as a surrogate. A …


Stress-Sensing In Flexible Epoxy Adhesives, Christine Rukeyser Dec 2023

Stress-Sensing In Flexible Epoxy Adhesives, Christine Rukeyser

Honors Theses

In mechanochemistry, mechanical force causes a chemical change using small molecules, called mechanophores, by covalently connecting them into polymer materials. Stress-sensing mechanophores give a visual signal of mechanical force on the molecular level within a material. To our knowledge, stress-sensing mechanophores have never been incorporated into a commercially available epoxy kit. In this work, the characterization of two 3MTM Scotch-Weld TM Epoxy Adhesive kits: DP100 Plus Clear and DP190 Translucent have been completed through FT-IR Spectroscopy. The addition of the mechanophore spiropyran to the 3M kits will be discussed; as well as preparation and characterization of three dimerized anthracene derivatives. …


Study Of Human Circadian Protein (Hrory) And Lipid-Protein Interaction In Giant Virus (Pbcv-1), Laila Noor Dec 2023

Study Of Human Circadian Protein (Hrory) And Lipid-Protein Interaction In Giant Virus (Pbcv-1), Laila Noor

Open Access Theses & Dissertations

Project 1: Circadian rhythm is a 24-hour cycle that regulates physical and behavioral changes such as sleep-wake patterns in humans, tailoring the daily light and dark changes. Long-term disruption in circadian rhythms can cause sleep disorders such as sleep apnea, insomnia, et al. Limited research has been done on potential drugs to treat against circadian related sleep disorders. Inside the cell at molecular level, the circadian rhythm is regulated by interlocked time-delayed feedback loops, which involve positive and negative transcriptional regulators. Experimental results showed transcriptional factors Retinoic Acid Receptor-Related Orphan Receptors (RORs) improve the stability and functionality of the circadian …


Computational Quantum Chemistry Studies Of The Stabilities Of Radical Adducts Formed During The Oxidation Of Melatonin Derivatives, James Horne Dec 2023

Computational Quantum Chemistry Studies Of The Stabilities Of Radical Adducts Formed During The Oxidation Of Melatonin Derivatives, James Horne

Electronic Theses and Dissertations

Melatonin is a natural antioxidant that has been investigated for properties as a potential spin trap to identify short-lived free radicals. Computational quantum chemistry studies have been performed for the oxidation of melatonin to N1-acetyl-N2-formyl-5-methoxykynuramine. This research focused on modification of melatonin into derivatives and analyzing the change in total molecular energy from melatonin to its oxidation product, as well as the corresponding derivatives. Each of the molecular geometries were optimized at the DFT/B3LYP/6-31G(d), DFT/B3LYP/cc-pVXZ (X = D, T), HF/6-31G(d), HF/cc-PVXZ (X = D, T), MP2/6-31G(d), and MP2/cc-PVXZ (X = D, T) levels of theory. …


Synthesis Of Bacterial Glycerophospholipids For Biomembrane Model Studies: A Means To Advanced Biofuels, Felix Adulley Dec 2023

Synthesis Of Bacterial Glycerophospholipids For Biomembrane Model Studies: A Means To Advanced Biofuels, Felix Adulley

Electronic Theses and Dissertations

To reduce reliance on fossil fuels, sustainable biofuels are being pursued, especially advanced biofuels like 1-butanol that have higher energy content and greater compatibility with existing infrastructure than ethanol. A persistent challenge is the yield-limiting toxicity of biofuels and process solvents, such as tetrahydrofuran, to the microbes that ferment biomass into biofuel. The cell membrane is a focal point of toxicity, and understanding how it interacts with fuels and solvents is key to improving yield. Phospholipid bilayers are the core of biomembranes, and model biomembranes of defined composition provide the ideal platform for biophysical studies. To this end, glycerophospholipids characteristic …


Computational Study About Noncovalent Bonding Systems Involving Halogen, Chalcogen And Pnicogen Bonds, Jia Lu Dec 2023

Computational Study About Noncovalent Bonding Systems Involving Halogen, Chalcogen And Pnicogen Bonds, Jia Lu

All Graduate Theses and Dissertations, Fall 2023 to Present

First terms used in this thesis are introduced and defined as follows. In the periodic table, the elements in the 17th column are named halogen including fluorine (F), chlorine (Cl), bromine (Br) and iodine (I). The elements in the 16th column are named chalcogen including oxygen (O), sulfur (S), selenium (Se) and tellurium (Te). The elements in the 15th column are named pnicogen including nitrogen (N), phosphorus (P), arsenic (As) and antimony (Sb).

After hydrogen bonds (B-H⋅⋅⋅B) are well studied and understood by scientists and researchers, halogen bonds (R-X⋅⋅⋅B) have drawn attention due to the similarities in …