Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 3151 - 3180 of 8897

Full-Text Articles in Physical Sciences and Mathematics

Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai Jun 2017

Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai

Russell C. Hardie

We present a numerical wave propagation method for simulating imaging of an extended scene under anisoplanatic conditions. While isoplanatic simulation is relatively common, few tools are specifically designed for simulating the imaging of extended scenes under anisoplanatic conditions. We provide a complete description of the proposed simulation tool, including the wave propagation method used. Our approach computes an array of point spread functions (PSFs) for a two-dimensional grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. The degradation …


Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch Jun 2017

Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch

Russell C. Hardie

Differential tilt variance is a useful metric for interpreting the distorting effects of turbulence in incoherent imaging systems. In this paper, we compare the theoretical model of differential tilt variance to simulations. Simulation is based on a Monte Carlo wave optics approach with split step propagation. Results show that the simulation closely matches theory. The results also show that care must be taken when selecting a method to estimate tilts.


Nanomaterials As Stationary Phases And Supports In Liquid Chromatography: A Review, Sandya Beeram, Elliott Rodriguez, Suresh Doddavenkatanna, Zhao Li, Allegra Pekarek, Darin Peev, Kathryn Goerl, Gianfranco Trovato, Tino Hofmann, David S. Hage Jun 2017

Nanomaterials As Stationary Phases And Supports In Liquid Chromatography: A Review, Sandya Beeram, Elliott Rodriguez, Suresh Doddavenkatanna, Zhao Li, Allegra Pekarek, Darin Peev, Kathryn Goerl, Gianfranco Trovato, Tino Hofmann, David S. Hage

David Hage Publications

The development of various nanomaterials over the last few decades has led to many applications for these materials in liquid chromatography (LC). This review will look at the types of nanomaterials that have been incorporated into LC systems and the applications that have been explored for such systems. A number of carbon-based nanomaterials and inorganic nanomaterials have been considered for use in LC, ranging from carbon nanotubes, fullerenes and nanodiamonds to metal nanoparticles and nanostructures based on silica, alumina, zirconia and titanium dioxide. Many ways have been described for incorporating these nanomaterials into LC systems. These methods have included covalent …


Recursive Robust Pca Or Recursive Sparse Recovery In Large But Structured Noise, Chenlu Qiu, Namrata Vaswani, Brian Lois, Leslie Hogben Jun 2017

Recursive Robust Pca Or Recursive Sparse Recovery In Large But Structured Noise, Chenlu Qiu, Namrata Vaswani, Brian Lois, Leslie Hogben

Namrata Vaswani

This paper studies the recursive robust principal components analysis problem. If the outlier is the signal-of-interest, this problem can be interpreted as one of recursively recovering a time sequence of sparse vectors, St, in the presence of large but structured noise, Lt. The structure that we assume on Lt is that Lt is dense and lies in a low-dimensional subspace that is either fixed or changes slowly enough. A key application where this problem occurs is in video surveillance where the goal is to separate a slowly changing background (Lt) from moving foreground objects (St) on-the-fly. To solve the above …


Prediction Of Remaining Life Of Power Transformers Based On Left Truncated And Right Censored Lifetime Data, Yili Hong, William Q. Meeker, James D. Mccalley Jun 2017

Prediction Of Remaining Life Of Power Transformers Based On Left Truncated And Right Censored Lifetime Data, Yili Hong, William Q. Meeker, James D. Mccalley

James McCalley

Prediction of the remaining life of high-voltage power transformers is an important issue for energy companies because of the need for planning maintenance and capital expenditures. Lifetime data for such transformers are complicated because transformer lifetimes can extend over many decades and transformer designs and manufacturing practices have evolved. We were asked to develop statistically-based predictions for the lifetimes of an energy company’s fleet of high-voltage transmission and distribution transformers. The company’s data records begin in 1980, providing information on installation and failure dates of transformers. Although the dataset contains many units that were installed before 1980, there is no …


Highly Directional Receiver And Source Antennas Using Photonic Band Gap Crystals, Rana Biswas, Gary L. Tuttle, Ekmel Ozbay, Burak Temelkuran, Mihail Sigalas, Kai-Ming Ho Jun 2017

Highly Directional Receiver And Source Antennas Using Photonic Band Gap Crystals, Rana Biswas, Gary L. Tuttle, Ekmel Ozbay, Burak Temelkuran, Mihail Sigalas, Kai-Ming Ho

Gary Tuttle

A directional antenna made with photonic band gap structures has been presented. The directional antenna is formed with two photonic band gap structures oriented back to back and separated from each other by a distance to form a resonant cavity between the photonic band gap structures. An antenna element is placed in the resonant cavity. The resonant frequency of the cavity is tuned by adjusting the distance between the photonic band gap structures. The resonant cavity can be asymmetrical or symmetrical.


Weak Anti-Localization And Quantum Oscillations Of Surface States In Topological Insulator Bi2se2te, Lihong Bao, Liang He, Nicholas R. Meyer, Xufeng Kou, Peng Zhang, Zhi-Gang Chen, Alexei V. Fedorov, Trevor M. Riedemann, Thomas A. Lograsso, Kang L. Wang, Gary Tuttle, Faxian Xiu Jun 2017

Weak Anti-Localization And Quantum Oscillations Of Surface States In Topological Insulator Bi2se2te, Lihong Bao, Liang He, Nicholas R. Meyer, Xufeng Kou, Peng Zhang, Zhi-Gang Chen, Alexei V. Fedorov, Trevor M. Riedemann, Thomas A. Lograsso, Kang L. Wang, Gary Tuttle, Faxian Xiu

Gary Tuttle

Topological insulators, a new quantum state of matter, create exciting opportunities for studying topological quantum physics and for exploring spintronic applications due to their gapless helical metallic surface states. Here, we report the observation of weak anti-localization and quantum oscillations originated from surface states in Bi2Se2Te crystals. Angle-resolved photoemission spectroscopy measurements on cleaved Bi2Se2Te crystals show a well-defined linear dispersion without intersection of the conduction band. The measured weak anti-localization effect agrees well with the Hikami-Larkin-Nagaoka model and the extracted phase coherent length shows a power-law dependence with temperature ( ∼T−0.44), indicating the presence of the surface states. …


Ferromagnetism Of Magnetically Doped Topological Insulators In Crxbi2− Xte3 Thin Films, Yan Ni, Z. Zhang, Ikenna C. Nlebedim, M. Ravi Hadimani, Gary L. Tuttle, David C. Jiles Jun 2017

Ferromagnetism Of Magnetically Doped Topological Insulators In Crxbi2− Xte3 Thin Films, Yan Ni, Z. Zhang, Ikenna C. Nlebedim, M. Ravi Hadimani, Gary L. Tuttle, David C. Jiles

Gary Tuttle

We investigated the effect of magnetic doping on magnetic and transport properties of Bi2Te3thin films. CrxBi2−xTe3 thin films with x = 0.03, 0.14, and 0.29 were grown epitaxially on mica substrate with low surface roughness (∼0.4 nm). It is found that Cr is an electron acceptor in Bi2Te3 and increases the magnetization of CrxBi2−xTe3. When x = 0.14 and 0.29,ferromagnetism appears in CrxBi2−xTe3 thin films, where anomalous Hall effect and weak localization of magnetoconductance were observed. The Curie temperature, coercivity, and remnant Hall resistance of thin films increase with increasing Cr concentration. The Arrott-Noakes plot demonstrates that the critical mechanism …


Network Connection Blocker, Method, And Computer Readable Memory For Monitoring Connections In A Computer Network And Blocking The Unwanted Connections, Douglas W. Jacobson, James A. Davis Jun 2017

Network Connection Blocker, Method, And Computer Readable Memory For Monitoring Connections In A Computer Network And Blocking The Unwanted Connections, Douglas W. Jacobson, James A. Davis

Douglas Jacobson

A network connection blocker for monitoring connections between host computers in a network and blocking the unwanted connections. The host computers transmit connection packets between each other in accordance with a network protocol suite when seeking to establish, providing network services with, and close the connections. The network protocol suite includes a connection oriented transport layer protocol. The network connection blocker comprises a network interface that receives the connection packets transmitted between the host computers. It also comprises a blocking module that processes the received connection packets to detect the unwanted connections. The blocking module then generates connection packets in …


Multispectral Identification Array, Zachary D. Eagan Jun 2017

Multispectral Identification Array, Zachary D. Eagan

Computer Engineering

The Multispectral Identification Array is a device for taking full image spectroscopy data via the illumination of a subject with sixty-four unique spectra. The array combines images under the illumination spectra to produce an approximate reflectance graph for every pixel in a scene. Acquisition of an entire spectrum allows the array to differentiate objects based on surface material. Spectral graphs produced are highly approximate and should not be used to determine material properties, however the output is sufficiently consistent to allow differentiation and identification of previously sampled subjects. While not sufficiently advanced for use as a replacement to spectroscopy the …


Testimony Of Dr. George H. Baker, Senior Advisor To The Congressional Emp Commission, George H. Baker Iii Jun 2017

Testimony Of Dr. George H. Baker, Senior Advisor To The Congressional Emp Commission, George H. Baker Iii

Department of Integrated Science and Technology - Faculty Scholarship

This is the script of testimony before the Federal Energy Regulatory Commission. It offers a vision for a future in which our electric power systems will be able to operate through or quickly recover from catastrophic failure due to electromagnetic pulse (EMP), cyber, and physical attacks. The scope of the term ‘EMP’ used in this testimony includes both naturally occurring solar storms and the more energetic man-made EMP hazards. The vision has been discussed with members of the electric power industry, and prominent EMP/cyber/physical protection advocates who find it to be supportable and actionable. The nature of EMP, cyber, and …


Agenda: Second International Workshop On Thin Films For Electronics, Electro-Optics, Energy And Sensors (Tfe3s), University Of Dayton Research Institute Jun 2017

Agenda: Second International Workshop On Thin Films For Electronics, Electro-Optics, Energy And Sensors (Tfe3s), University Of Dayton Research Institute

Electro-Optics and Photonics Faculty Publications

University of Dayton’s Center of Excellence for Thin Film Research and Surface Engineering (CETRASE) is delighted to organize its second international workshop at the University of Dayton’s Research Institute (UDRI) campus in Dayton, Ohio, USA. The purpose of the new workshop is to exchange technical knowledge and boost technical and educational collaboration activities within the thin film research community through our CETRASE and the UDRI.


Generalized Differential Calculus And Applications To Optimization, R. Blake Rector Jun 2017

Generalized Differential Calculus And Applications To Optimization, R. Blake Rector

Dissertations and Theses

This thesis contains contributions in three areas: the theory of generalized calculus, numerical algorithms for operations research, and applications of optimization to problems in modern electric power systems. A geometric approach is used to advance the theory and tools used for studying generalized notions of derivatives for nonsmooth functions. These advances specifically pertain to methods for calculating subdifferentials and to expanding our understanding of a certain notion of derivative of set-valued maps, called the coderivative, in infinite dimensions. A strong understanding of the subdifferential is essential for numerical optimization algorithms, which are developed and applied to nonsmooth problems in operations …


Measuring The Reflection Matrix Of A Rough Surface, Kenneth W. Burgi, Michael A. Marciniak, Mark E. Oxley, Stephen E. Nauyoks May 2017

Measuring The Reflection Matrix Of A Rough Surface, Kenneth W. Burgi, Michael A. Marciniak, Mark E. Oxley, Stephen E. Nauyoks

Faculty Publications

Phase modulation methods for imaging around corners with reflectively scattered light required illumination of the occluded scene with a light source either in the scene or with direct line of sight to the scene. The RM (reflection matrix) allows control and refocusing of light after reflection, which could provide a means of illuminating an occluded scene without access or line of sight. Two optical arrangements, one focal-plane, the other an imaging system, were used to measure the RM of five different rough-surface reflectors. Intensity enhancement values of up to 24 were achieved. Surface roughness, correlation length, and slope were examined …


Operating Temperature Of A Solar Thermal Stirling Engine, Spencer Beck May 2017

Operating Temperature Of A Solar Thermal Stirling Engine, Spencer Beck

Senior Theses

This paper explores the relationship between the operating temperature and electricity production of a simple heat engine. A Stirling engine was designed and constructed which runs on solar thermal energy collected by a Fresnel lens. The surface area of the solar collector was varied. This manipulated the operating temperature of the Stirling engine in order to measure power output. The mechanical energy from the engine was converted to electricity using a DC motor running in reverse, acting like a generator, in conjunction with an Arduino for data collection. Although adjustments must be made in order to improve the efficiency of …


Are Solar Panels A Viable Power Source For A Green Energy Vehicle?, Mason C. Adams May 2017

Are Solar Panels A Viable Power Source For A Green Energy Vehicle?, Mason C. Adams

Senior Theses

A solar cell powered go-kart has been built and tested. The result shows using solar energy alone cannot meet the requirement of running a regular passenger car. This is due to the limited surface area of the passenger car. This thesis also discusses the operating principles of solar panels, the physics of P type and N type semiconductors, and the formation of the PN junction, as well as the solar current. Modifications of an existing go-kart are described in detail in this thesis. Suggestions for making green vehicles are discussed as well.


2017 Spring Engr333 Project Final Report (Section B), Daniel Dick, Nathan Swaim, Jonathan Sager, Ellen Reidy, Jordan Swets, Joel Van Dyke, Connor Macdonald, Josiah Markvluwer, Justin Rohlicek, John Lee, Zach Mouw, Daniel Wharton, Sam Hanover, Jay Noyola, Adam Christenson, Scott Stamper, Aaron Tucker, Bethany Waanders, Joel Schaefer, Maddie Collins, Matthew Cok, Philip Kim, Steve Vanden Berg May 2017

2017 Spring Engr333 Project Final Report (Section B), Daniel Dick, Nathan Swaim, Jonathan Sager, Ellen Reidy, Jordan Swets, Joel Van Dyke, Connor Macdonald, Josiah Markvluwer, Justin Rohlicek, John Lee, Zach Mouw, Daniel Wharton, Sam Hanover, Jay Noyola, Adam Christenson, Scott Stamper, Aaron Tucker, Bethany Waanders, Joel Schaefer, Maddie Collins, Matthew Cok, Philip Kim, Steve Vanden Berg

ENGR 333

The Physical Education Complex is located in the North-end of Calvin College’s campus, and supports many athletic, academic, event and recreational functions. Due to its heavy use, the complex contributes 20% of the College’s electricity consumption. Monetarily, this equated to electricity costs of about $385,000 last year. With these financial implications, the College is searching for ways to reduce the cost. While there is little to no room for electricity cost rate reductions, there is opportunity for improvement through the implementation of more efficient components. However, the sources of electricity demand are largely unknown. Our objective is to develop a …


2017 Spring Engr333 Project Final Report (Section A), Devin Auld, Scott Bokach, Joshua Bronner, Alex Meador, Ryan Hoek, Robert Lanser, Matthew Lenko, Elliot Slenk, Brendan Biesboer, Kyle Mailhot, Nate Zylstra, Jonah Engel, Rich Floro, Björn Krebs, Ethan Postmus, Cameron Bell, Caleb Bieske, Chris Griffin, Bernice Portugal, Ryan Beezhold, Dillon Carhuff, Ian Mcclaskie, Jared Vanderklay, Rounak Chatterjee, Toby Dalla Santa, Jenny Haney, Joel Hoskins, Caleb Senyshyn May 2017

2017 Spring Engr333 Project Final Report (Section A), Devin Auld, Scott Bokach, Joshua Bronner, Alex Meador, Ryan Hoek, Robert Lanser, Matthew Lenko, Elliot Slenk, Brendan Biesboer, Kyle Mailhot, Nate Zylstra, Jonah Engel, Rich Floro, Björn Krebs, Ethan Postmus, Cameron Bell, Caleb Bieske, Chris Griffin, Bernice Portugal, Ryan Beezhold, Dillon Carhuff, Ian Mcclaskie, Jared Vanderklay, Rounak Chatterjee, Toby Dalla Santa, Jenny Haney, Joel Hoskins, Caleb Senyshyn

ENGR 333

The objective of ENGR-333-A was to develop a well-defined, bottom-up energy demand model for the energy consumption of the dormitories on Calvin College’s campus for each year of the past decade within an accuracy of ± 2%.


Multidataset Independent Subspace Analysis: A Framework For Analysis Of Multimodal, Multi-Subject Brain Imaging Data, Rogers F. Silva May 2017

Multidataset Independent Subspace Analysis: A Framework For Analysis Of Multimodal, Multi-Subject Brain Imaging Data, Rogers F. Silva

Electrical and Computer Engineering ETDs

Mental illnesses are serious disorders of the brain that have devastating effects on individuals and society. In addition to their disabling and impairing effects, mental illnesses have deep social and economical implications, accounting for an estimated loss of 12 billion working days and a care cost surge to $6 trillion a year by 2030. For diseases such as depression and anxiety, enhancing preventive programs and treatment accessibility, in combination with accurate early diagnosis and personalized treatments, are projected to result in a four-fold return on every dollar invested, a strategy that can drastically help curtail those losses. Notably, within the …


2017 Spring Engr333 Seminar Presentation, Jonah Engel, Rich Floro, Björn Krebs, Ethan Postmus, Brendan Biesboer, Kyle Mailhot, Nate Zylstra, Ryan Beezhold, Dillon Carhuff, Ian Mcclaskie, Jared Vanderklay, Rounak Chatterjee, Toby Dalla Santa, Jennifer Haney, Joel Hoskins, Caleb Senyshyn, Alex Meador, Scott Bokach, Devin Auld, Joshua Bronner, Elliot Slenk, Matthew Lenko, Robert Lanser, Ryan Hoek, Cameron Bell, Caleb Bieske, Chris Griffin, Bernice Portugal, Sam Hanover, Dan Wharton, Jay Noyola, Zachary Mouw, John Lee, Daniel Dick, Jonathan Sager, Nathan Swaim, Ellen Reidy, Jordan Swets, Joel Van Dyke, Connor Macdonald, Josiah Markvluwer, Justin Rohlicek, Adam Christensen, Scott Stamper, Aaron Tucker, Bethany Waanders, Joel Schaefer, Maddie Collins, Matthew Cok, Philip Kim, Steve Vanden Berg May 2017

2017 Spring Engr333 Seminar Presentation, Jonah Engel, Rich Floro, Björn Krebs, Ethan Postmus, Brendan Biesboer, Kyle Mailhot, Nate Zylstra, Ryan Beezhold, Dillon Carhuff, Ian Mcclaskie, Jared Vanderklay, Rounak Chatterjee, Toby Dalla Santa, Jennifer Haney, Joel Hoskins, Caleb Senyshyn, Alex Meador, Scott Bokach, Devin Auld, Joshua Bronner, Elliot Slenk, Matthew Lenko, Robert Lanser, Ryan Hoek, Cameron Bell, Caleb Bieske, Chris Griffin, Bernice Portugal, Sam Hanover, Dan Wharton, Jay Noyola, Zachary Mouw, John Lee, Daniel Dick, Jonathan Sager, Nathan Swaim, Ellen Reidy, Jordan Swets, Joel Van Dyke, Connor Macdonald, Josiah Markvluwer, Justin Rohlicek, Adam Christensen, Scott Stamper, Aaron Tucker, Bethany Waanders, Joel Schaefer, Maddie Collins, Matthew Cok, Philip Kim, Steve Vanden Berg

ENGR 333

File for student presentation, given by students in the Spring 2017 class of ENGR333.


Investigating Student Learning Of Analog Electronics, Kevin L. Van De Bogart May 2017

Investigating Student Learning Of Analog Electronics, Kevin L. Van De Bogart

Electronic Theses and Dissertations

Instruction in analog electronics is an integral component of many physics and engineering programs, and is typically covered in courses beyond the first year. While extensive research has been conducted on student understanding of introductory electric circuits, to date there has been relatively little research on student learning of analog electronics in either physics or engineering courses. Given the significant overlap in content of courses offered in both disciplines, this study seeks to strengthen the research base on the learning and teaching of electric circuits and analog electronics via a single, coherent investigation spanning both physics and engineering courses.

This …


College Of Engineering Senior Design Competition Spring 2017, University Of Nevada, Las Vegas May 2017

College Of Engineering Senior Design Competition Spring 2017, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Part of every UNLV engineering student’s academic experience, the senior design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs, and prototypes a product in this required element of the curriculum. A capstone to the student’s educational career, the senior design project encourages the student to use everything learned in the engineering program to create a practical, real world solution to an engineering challenge. The senior design competition helps focus the senior students in increasing the quality and potential for commercial application for their design projects. Judges from local industry evaluate the projects on …


Studies In Mesoscopics And Quantum Microscopies, Zhenghao Ding, Gabriel C. Spalding May 2017

Studies In Mesoscopics And Quantum Microscopies, Zhenghao Ding, Gabriel C. Spalding

Honors Projects

This thesis begins with a foundational section on quantum optics. The single-photon detectors used in the first chapter were obtained through the Advanced Laboratory Physics Association (ALPhA), which brokered reduced cost for educational use, and the aim of the single-photon work presented in Chapter 1 is to develop modules for use in Illinois Wesleyan's instructional labs beyond the first year of university. Along with the American Association of Physics Teachers, ALPhA encourages capstone-level work, such as Chapter 1 of this honors thesis, which is explicitly designed to play the role of passing on, to a next generation of physics majors, …


Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore May 2017

Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore

Electrical and Computer Engineering Faculty Publications

In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a …


Hardware Design Theory (Using Raspberry Pi), Anthony Kelly, Thomas Blum Dr. May 2017

Hardware Design Theory (Using Raspberry Pi), Anthony Kelly, Thomas Blum Dr.

Undergraduate Research

The concept for this research proposal is focused on achieving three main objectives:

1) To understand the logic and design behind the Raspberry Pi (RbP) mini-computer model, including: all hardware components and their functions, the capabilities [and limits] of the RbP, and the circuit engineering for these components.

2) To be able to, using the Python high-level language, duplicate, manipulate, and create RbP projects ranging from basic user-input and response systems to the theories behind more intricate and complicated observatory sensors.

3) Simultaneously, in order to combine a mutual shared interest of History and to blend in work done within …


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster May 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Electrical and Computer Engineering Faculty Publications

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an …


Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii May 2017

Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii

Graduate Theses and Dissertations

Metal nanoparticles deposited in regular arrays spaced at optical wavelengths support a resonance due to a coherent coupling between localized surface plasmon mode and lattice diffraction allowing for engineering of tunable devices for use in biological sensors, nanoantennae, and enhanced spectroscopy. Techniques such as electron beam lithography, focused ion beam lithography, nanosphere lithography, and nanoimprint lithography are used for fabrication but are limited by cost, device throughput, and small deposition. Polymer soft lithography and continuous dewetting of particles is a potentially viable alternative showing promise in all of those areas. This thesis developed the fabrication of a refined hydrophilic nanoimprinted …


In Situ Electron Microscopy Of Plasmon-Mediated Nanocrystal Synthesis, Peter Sutter, Ying Li, Christos Argyropoulos, Eli A. Sutter May 2017

In Situ Electron Microscopy Of Plasmon-Mediated Nanocrystal Synthesis, Peter Sutter, Ying Li, Christos Argyropoulos, Eli A. Sutter

Department of Electrical and Computer Engineering: Faculty Publications

Chemical processes driven by nonthermal energy (e.g., visible light) are attractive for future approaches to energy conversion, synthesis, photocatalysis, and so forth. The growth of anisotropic metal nanostructures mediated by excitation of a localized surface plasmon resonance (LSPR) is a prototype example of such a reaction. Important aspects, notably the growth mechanism and a possible role of plasmonic “hot spots” within the metal nanostructures, remain poorly understood. Here, we use in situ electron microscopy to stimulate and image the plasmon-mediated growth of triangular Ag nanoprisms in solution. The quantification of the time-dependent evolution of the lateral size and thickness of …


A Manufacturer Design Kit For Multi-Chip Power Module Layout Synthesis, Jonathan Main May 2017

A Manufacturer Design Kit For Multi-Chip Power Module Layout Synthesis, Jonathan Main

Electrical Engineering Undergraduate Honors Theses

The development of Multi-Chip Power Modules (MCPMs) has been a key factor in recent advancements in power electronics technologies. MCPMs achieve higher power density by combining multiple power semiconductor devices into one package. The work detailed in this thesis is part of an ongoing project to develop a computer-aided design software tool known as PowerSynth for MCPM layout synthesis and optimization. This thesis focuses on the definition and design of a Manufacturer Design Kit (MDK) for PowerSynth, which enables the designer to design an MCPM for a manufacturer’s fabrication process.

The MDK is comprised of a layer stack and technology …


Target Detection With Neural Network Hardware, Hollis Bui, Garrett Massman, Nikolas Spangler, Jalen Tarvin, Luke Bechtel, Kevin Dunn, Shawn Bradford May 2017

Target Detection With Neural Network Hardware, Hollis Bui, Garrett Massman, Nikolas Spangler, Jalen Tarvin, Luke Bechtel, Kevin Dunn, Shawn Bradford

Chancellor’s Honors Program Projects

No abstract provided.