Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1561 - 1590 of 36535

Full-Text Articles in Physical Sciences and Mathematics

The Development Of Optomechanical Sensors—Integrating Diffractive Optical Structures For Enhanced Sensitivity, Faolan Radford Mcgovern, Aleksandra Hernik, Catherine M. Grogan, George Amarandei, Izabela Naydenova Jan 2023

The Development Of Optomechanical Sensors—Integrating Diffractive Optical Structures For Enhanced Sensitivity, Faolan Radford Mcgovern, Aleksandra Hernik, Catherine M. Grogan, George Amarandei, Izabela Naydenova

Conference Papers

The term optomechanical sensors describes devices based on coupling the optical and mechanical sensing principles. The presence of a target analyte leads to a mechanical change, which, in turn, determines an alteration in the light propagation. Having higher sensitivity in comparison with the individual technologies upon which they are based, the optomechanical devices are used in biosensing, humidity, temperature, and gases detection. This perspective focuses on a particular class, namely on devices based on diffractive optical structures (DOS). Many configurations have been developed, including cantilever- and MEMS-type devices, fiber Bragg grating sensors, and cavity optomechanical sensing devices. These state-of-the-art sensors …


Cavitation Erosion And Corrosion Resistance Of Hydrophobic Sol-Gel Coatings On Aluminium Alloy, Manasa Hegde, Joseph Mohan, Muhammad Qasim Mushtaq Warraich, Yvonne Kavanagh, Brendan Duffy, Edmond F. Tobin Jan 2023

Cavitation Erosion And Corrosion Resistance Of Hydrophobic Sol-Gel Coatings On Aluminium Alloy, Manasa Hegde, Joseph Mohan, Muhammad Qasim Mushtaq Warraich, Yvonne Kavanagh, Brendan Duffy, Edmond F. Tobin

Articles

Cavitation erosion and erosion-corrosion are the popular failure modes of hydronautics components namely propellers, valves, turbines etc which occurs due to mechanical destructions and electrochemical corrosion. Erosion corrosion is caused due to surge in the number of solid particles affecting the surfaces whereas cavitation erosion is caused due to steady collapse of cavities or bubbles. Aluminium alloys are widely used in marine renewable industries owing to its high strength, light weight and good corrosion resistance. Despite that, cavitation and erosion-corrosion are the limiting factors for these alloys. The aim of the present work is to produce a coating system capable …


Using Computational Fluid Dynamics And Optical Sensor Technology To Scale Cell Culture Platforms, Mandar Makwana Jan 2023

Using Computational Fluid Dynamics And Optical Sensor Technology To Scale Cell Culture Platforms, Mandar Makwana

KGI Theses and Dissertations

Different cell culture vessels ranging from micro scale to laboratory scale to commercial scale play critical role in upstream process development for biologics manufacturing. Based on the mode of operation, cell culture vessels have different hydrodynamic environments, making it challenging to scale. Integrated approaches using computational tools supported by experimental studies can overcome these challenges. Computational Fluid Dynamics (CFD) is one such tool that can simulate hydrodynamics within the cell culture vessels and can provide insights at macro and micro-scale. Accuracy of a CFD model significantly depends on the fluid model and assumptions. Traditionally, simple two-equation fluid models were developed …


Quantum Computing For Nuclear Physics, Aikaterini Nikou Jan 2023

Quantum Computing For Nuclear Physics, Aikaterini Nikou

2023 REYES Proceedings

Nuclear physics can greatly advance by taking advantage of quantum computing. Quantum computing can play a pivotal role in advancing nuclear physics and can allow for the description of physical situations and problems that are prohibitive to solve using classical computing due to their complexity. Some of the problems whose complexity requires using quantum computing to describe are: interacting quantum many-body and Quantum Field Theory problems such as simulating strongly interacting fields such as Quantum Chromodynamics with physical time evolution, the determination of the shape/phase of a nucleus using the time evolution of an appropriated observable as well as identifying …


Hovering Potato ~ Activity Plan, Admin Stem For Success Jan 2023

Hovering Potato ~ Activity Plan, Admin Stem For Success

STEM for Success Showcase

This experiment is a great example of chemistry. This experiment relies heavily on density and diffusion.

  • Water is less dense than half of a potato. Therefore, the potato sinks.

  • Sugar water is more dense than half of a potato. Therefore, the potato floats.

By slowly adding water to sugar water, two layers are formed which allows the potato to hover in between. Slowly adding the water allows for diffusion to occur at a minimum.


Full Treatment Of The Thrust Distribution In Single Inclusive E⁺E⁻ → H X Processes, M. Boglione, Andrea Simonelli Jan 2023

Full Treatment Of The Thrust Distribution In Single Inclusive E⁺E⁻ → H X Processes, M. Boglione, Andrea Simonelli

Physics Faculty Publications

Extending the transverse momentum dependent factorization to thrust dependent observables entails a series of difficulties, ultimately associated to the behavior of soft radiation. As a consequence, the definition of the transverse momentum dependent functions has to be revised, while preserving (and possibly extending) their universality properties. Moreover, the regularization of the rapidity divergences generates non trivial correlations between rapidity and thrust. In this paper, we show how to deal with these correlations in a consistent treatment of the thrust dependence of e+eh X cross section, where the hadron transverse momentum is measured with respect to …


Measurement Of Spin-Density Matrix Elements In P(770) Production With A Linearly Polarized Photon Beam At E𝛾 = 8.2-8.8 Gev, S. Adhikari, F. Afzal, C. S. Akondi, M. Albrecht, M. Amaryan, V. Arroyave, A. Asaturyan, A. Austregesilo, Z. Baldwin, F. Barbosa, J. Barlow, E. Barriga, R. Barsotti, T. D. Beattie, V. V. Berdnikov, T. Black, W. Boeglin, W. J. Briscoe, T. Britton, B. Zihlmann, Et Al., Gluex Collaboration Jan 2023

Measurement Of Spin-Density Matrix Elements In P(770) Production With A Linearly Polarized Photon Beam At E𝛾 = 8.2-8.8 Gev, S. Adhikari, F. Afzal, C. S. Akondi, M. Albrecht, M. Amaryan, V. Arroyave, A. Asaturyan, A. Austregesilo, Z. Baldwin, F. Barbosa, J. Barlow, E. Barriga, R. Barsotti, T. D. Beattie, V. V. Berdnikov, T. Black, W. Boeglin, W. J. Briscoe, T. Britton, B. Zihlmann, Et Al., Gluex Collaboration

Physics Faculty Publications

The GlueX experiment at Jefferson Lab studies photoproduction of mesons using linearly polarized 8.5 GeV photons impinging on a hydrogen target which is contained within a detector with near-complete coverage for charged and neutral particles. We present measurements of spin-density matrix elements for the photoproduction of the vector meson ρ(770). The statistical precision achieved exceeds that of previous experiments for polarized photoproduction in this energy range by orders of magnitude. We confirm a high degree of s-channel helicity conservation at small squared four-momentum transfer t and are able to extract the t dependence of natural- and unnatural-parity exchange contributions to …


Electron Scattering And Neutrino Physics, A. M. Ankowski, A. Ashkenazi, S. Bacca, J. L. Barrow, M. Betancourt, A. Bodek, M. E. Christy, L. Doria, S. Dytman, A. Friedland, O. Hen, C. J. Horowitz, N. Jachowicz, W. Ketchum, T. Lux, K. Mahn, C. Mariani, J. Newby, V. Pandey, A. Papadopoulou, E. Radicioni, F. Sánchez, C. Sfienti, J. M. Udías, L. Weinstein, L. Alvarez-Ruso, J. E. Amaro, C. A. Argüelles, A. B. Balantekin, S. Bolognesi, V. Brdar, P. Butti, S. Carey, Z. Djurcic, O. Dvornikov, S. Edayath, S. Gardiner, J. Isaacson, W. Jay, K. S. Mcfarland, A. Nikolakopoulos, A. Norrick, S. Pastore, G. Paz, M. H. Reno, I. Ruiz Simo, J. E. Sobczyk, A. Sousa, N. Toro, Y. D. Tsai, M. Wagman, J. G. Walsh, G. Yang Jan 2023

Electron Scattering And Neutrino Physics, A. M. Ankowski, A. Ashkenazi, S. Bacca, J. L. Barrow, M. Betancourt, A. Bodek, M. E. Christy, L. Doria, S. Dytman, A. Friedland, O. Hen, C. J. Horowitz, N. Jachowicz, W. Ketchum, T. Lux, K. Mahn, C. Mariani, J. Newby, V. Pandey, A. Papadopoulou, E. Radicioni, F. Sánchez, C. Sfienti, J. M. Udías, L. Weinstein, L. Alvarez-Ruso, J. E. Amaro, C. A. Argüelles, A. B. Balantekin, S. Bolognesi, V. Brdar, P. Butti, S. Carey, Z. Djurcic, O. Dvornikov, S. Edayath, S. Gardiner, J. Isaacson, W. Jay, K. S. Mcfarland, A. Nikolakopoulos, A. Norrick, S. Pastore, G. Paz, M. H. Reno, I. Ruiz Simo, J. E. Sobczyk, A. Sousa, N. Toro, Y. D. Tsai, M. Wagman, J. G. Walsh, G. Yang

Physics Faculty Publications

A thorough understanding of neutrino–nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino–nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments—both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program—and could well be the difference between achieving or missing discovery level precision. To this end, electron–nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used …


Superconducting Non-Elliptical Cavities (Tem Cavity Designs), Subashini De Silva Jan 2023

Superconducting Non-Elliptical Cavities (Tem Cavity Designs), Subashini De Silva

Physics Faculty Publications

This lecture will present fundamental of RF to accelerate or reflect beams. The lecture will cover the electrical design method of the SRF high/medium/low beta cavities. The difference in the cavity design between TM mode and TE will be emphasized.


Observation Of Correlations Between Spin And Transverse Momenta In Back-To-Back Dihadron Production At Clas12, H. Avakian, T.B. Hayward, A. Kotzinian, W.R. Armstrong, H. Atac, C. Ayerbe Gayoso, L. Baashen, N.A. Balzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. S. Biselli, M. Bondi, S. Boiarinov, M. Zurek, Et Al. Jan 2023

Observation Of Correlations Between Spin And Transverse Momenta In Back-To-Back Dihadron Production At Clas12, H. Avakian, T.B. Hayward, A. Kotzinian, W.R. Armstrong, H. Atac, C. Ayerbe Gayoso, L. Baashen, N.A. Balzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. S. Biselli, M. Bondi, S. Boiarinov, M. Zurek, Et Al.

Physics Faculty Publications

We report the first measurements of deep inelastic scattering spin-dependent azimuthal asymmetries in back-to-back dihadron electroproduction in the deep inelastic scattering process. In this reaction, two hadrons are produced in opposite hemispheres along the z axis in the virtual photon-target nucleon center-of-mass frame, with the first hadron produced in the current-fragmentation region and the second in the target-fragmentation region. The data were taken with longitudinally polarized electron beams of 10.2 and 10.6 GeV incident on an unpolarized liquid-hydrogen target using the CLAS12 spectrometer at Jefferson Lab. Observed nonzero sinΔϕ modulations in ep→e'pπ+ X events, where Δϕ is the difference …


Determination Of The Titanium Spectral Function From (E, E'P) Data, L. Jiang, A.M. Ankowski, D. Abrams, L. Gu, B. Aljawrneh, S. Alsalmi, J. Bane, A. Batz, S. Barcus, M. Barroso, V. Bellini, O. Benhar, J. Bericic, D. Biswas, A. Camsonne, J. Castellanos, J. -P. Chen, M. E. Christy, K. Craycraft, R. Cruz-Torres, H. Dai, D. Day, A. Dirican, S. -C. Dusa, E. Fuchey, T. Gautam, C. Giusti, J. Gomez, C. Gu, T. J. Hague, J. -O. Hansen, F. Hauenstein, D. W. Higinbotham, C. Hyde, Z. Jerzyk, A. M. Johnson, C. Keppel, C. Lanham, S. Li, R. Lindgren, H. Liu, C. Mariani, R. E. Mcclellan, D. Meekins, R. Michaels, M. Mihovilovic, M. Murphy, D. Nguyen, M. Nycz, L. Ou, B. Pandey, V. Pandey, K. Park, G. Perera, A.J.R. Puckett, S.N. Santiesteban, S. Ŝirca, T. Su, L. Tang, Y. Tian, N. Ton, B. Wojsekhowski, S. Wood, Z. Ye, J. Zhang Jan 2023

Determination Of The Titanium Spectral Function From (E, E'P) Data, L. Jiang, A.M. Ankowski, D. Abrams, L. Gu, B. Aljawrneh, S. Alsalmi, J. Bane, A. Batz, S. Barcus, M. Barroso, V. Bellini, O. Benhar, J. Bericic, D. Biswas, A. Camsonne, J. Castellanos, J. -P. Chen, M. E. Christy, K. Craycraft, R. Cruz-Torres, H. Dai, D. Day, A. Dirican, S. -C. Dusa, E. Fuchey, T. Gautam, C. Giusti, J. Gomez, C. Gu, T. J. Hague, J. -O. Hansen, F. Hauenstein, D. W. Higinbotham, C. Hyde, Z. Jerzyk, A. M. Johnson, C. Keppel, C. Lanham, S. Li, R. Lindgren, H. Liu, C. Mariani, R. E. Mcclellan, D. Meekins, R. Michaels, M. Mihovilovic, M. Murphy, D. Nguyen, M. Nycz, L. Ou, B. Pandey, V. Pandey, K. Park, G. Perera, A.J.R. Puckett, S.N. Santiesteban, S. Ŝirca, T. Su, L. Tang, Y. Tian, N. Ton, B. Wojsekhowski, S. Wood, Z. Ye, J. Zhang

Physics Faculty Publications

The E12-14-012 experiment, performed in Jefferson Lab Hall A, has measured the (e,e′p) cross section in parallel kinematics using a natural titanium target. In this paper, we report the analysis of the dataset obtained in different kinematics for our solid natural titanium target. Data were obtained in a range of missing momentum and missing energy between 15 ≲ pm ≲ 250  MeV/c and 12 ≲ Em ≲ 80  MeV, respectively, and using an electron beam energy of 2.2 GeV. We measured the reduced cross section with ∼7% accuracy as a function of both missing momentum and missing energy. …


Generation And Characterization Of Magnetized Electron Beam From A Dc High Voltage Photogun For Electron Beam Cooling Application, S.A.K. Wijethunga, M. A. Mamun, R. Suleiman, P. Adderley, B. Bullard, J. Benesch, Jean R. Delayen, J. Grames, C. Hernandez-Garcia, F. Hannon, Geoffrey A. Krafft, G. Palacios-Serrano, M. Poelker, M. Stefani, Y. Wang, S. Zhang Jan 2023

Generation And Characterization Of Magnetized Electron Beam From A Dc High Voltage Photogun For Electron Beam Cooling Application, S.A.K. Wijethunga, M. A. Mamun, R. Suleiman, P. Adderley, B. Bullard, J. Benesch, Jean R. Delayen, J. Grames, C. Hernandez-Garcia, F. Hannon, Geoffrey A. Krafft, G. Palacios-Serrano, M. Poelker, M. Stefani, Y. Wang, S. Zhang

Physics Faculty Publications

One of the most challenging requirements for the proposed Electron–Ion Collider is the strong cooling of the proton beam, which is key to achieving the collider’s desired luminosity of order 1033–1034cm−2s−1. Magnetized bunched-beam electron cooling could be a means to achieve the required high luminosity, where strong cooling is accomplished inside a cooling solenoid where the ions co-propagate with an electron beam generated from a source immersed in a magnetic field. To increase the cooling efficiency, a bunched electron beam with high bunch charge and high repetition rate is required. This work …


First Measurement Of Λ Electroproduction Off Nuclei In The Current And Target Fragmentation Regions, T. Chetry, L. El Fassi, W. K. Brooks, R. Dupré, A. El Alaoui, K. Hafidi, P. Achenbach, K. P. Adhikari, Z. Akbar, W.R. Armstrong, M. Arratia, H. Atac, H. Avakian, L. Baashen, N.A. Baltzell, M. Bashkanov, M. Battaglieri, I. Bedlinsky, B. Benkel, M. Zurek, Et Al., Clas Collaboration Jan 2023

First Measurement Of Λ Electroproduction Off Nuclei In The Current And Target Fragmentation Regions, T. Chetry, L. El Fassi, W. K. Brooks, R. Dupré, A. El Alaoui, K. Hafidi, P. Achenbach, K. P. Adhikari, Z. Akbar, W.R. Armstrong, M. Arratia, H. Atac, H. Avakian, L. Baashen, N.A. Baltzell, M. Bashkanov, M. Battaglieri, I. Bedlinsky, B. Benkel, M. Zurek, Et Al., Clas Collaboration

Physics Faculty Publications

We report results of Λ hyperon production in semi-inclusive deep-inelastic scattering off deuterium, carbon, iron, and lead targets obtained with the CLAS detector and the Continuous Electron Beam Accelerator Facility 5.014 GeV electron beam. These results represent the first measurements of the Λ multiplicity ratio and transverse momentum broadening as a function of the energy fraction (z) in the current and target fragmentation regions. The multiplicity ratio exhibits a strong suppression at high zand an enhancement at low z. The measured transverse momentum broadening is an order of magnitude greater than that seen for light mesons. This …


Detailed Study Of Quark-Hadron Duality In Spin Structure Functions Of The Proton And Neutron, V. Lagerquist, S. E. Kuhn, N. Sato Jan 2023

Detailed Study Of Quark-Hadron Duality In Spin Structure Functions Of The Proton And Neutron, V. Lagerquist, S. E. Kuhn, N. Sato

Physics Faculty Publications

Background: The response of hadrons, the bound states of the strong force (QCD), to external probes can be described in two different, complementary frameworks: as direct interactions with their fundamental constituents, quarks and gluons, or alternatively as elastic or inelastic coherent scattering that leaves the hadrons in their ground state or in one of their excited (resonance) states. The former picture emerges most clearly in hard processes with high momentum transfer, where the hadron response can be described by the perturbative expansion of QCD, while at lower energy and momentum transfers, the resonant excitations of the hadrons dominate the cross …


Neutrino-Tagged Jets At The Electron Ion Collider, Miguel Arratia, Zhong-Bo Kang, Sebouh J. Paul, Alexei Prokudin, Felix Ringer, Fanyi Zhao Jan 2023

Neutrino-Tagged Jets At The Electron Ion Collider, Miguel Arratia, Zhong-Bo Kang, Sebouh J. Paul, Alexei Prokudin, Felix Ringer, Fanyi Zhao

Physics Faculty Publications

We explore the potential of jet observables in charged-current deep inelastic scattering events at the future Electron-Ion Collider. Tagging jets with a recoiling neutrino, which can be identified by the event’s missing transverse momentum, will allow for flavor-sensitive measurements of transverse momentum dependent parton distribution functions. We present the first predictions for transverse-spin asymmetries in azimuthal neutrino-jet correlations and hadron-in-jet measurements. We study the kinematic reach and the precision of these measurements and explore their feasibility using parametrized detector simulations. We conclude that jet production in charged-current deep inelastic scattering, while challenging in terms of luminosity requirements, will complement the …


Superheating Field In Superconductors With Nanostructured Surfaces, W. P. M. R. Pathirana, A. Gurevich Jan 2023

Superheating Field In Superconductors With Nanostructured Surfaces, W. P. M. R. Pathirana, A. Gurevich

Physics Faculty Publications

We report calculations of a dc superheating field Hsh in superconductors with nanostructured surfaces. Numerical simulations of the Ginzburg-Landau (GL) equations were performed for a superconductor with an inhomogeneous impurity concentration, a thin superconducting layer on top of another superconductor, and superconductor-insulator-superconductor (S-I-S) multilayers.The superheating field was calculated taking into account the instability of the Meissner state with a nonzero wavelength along the surface, which is essential for realistic values of the GL parameter κ. Simulations were done for the materials parameters of Nb and Nb3Sn at different values of κ and the mean free paths. We …


Investigation Of The Multilayer Shielding Effect Through Nbtin-Ain Coated Bulk Niobium, Iresha Harshani Senevirathne, D. R. Beverstock, A-M Valente-Feliciano, Alex Gurevich, Jean R. Delayen Jan 2023

Investigation Of The Multilayer Shielding Effect Through Nbtin-Ain Coated Bulk Niobium, Iresha Harshani Senevirathne, D. R. Beverstock, A-M Valente-Feliciano, Alex Gurevich, Jean R. Delayen

Physics Faculty Publications

We report measurements of the dc field onset Bp of magnetic flux penetration through NbTiN-AlN coating on bulk niobium using the Hall probe experimental setup. The measurements of Bp reveal the multilayer shielding effect on bulk niobium under high magnetic fields at cryogenic temperatures. We observed a significant enhancement in Bp for the NbTiN-AlN coated Nb samples as compared to bare Nb samples. The observed dependence of Bp on the coating thickness is consistent with theoretical predictions.


Foundations Of Wave Phenomena: Complete Version, Charles G. Torre Jan 2023

Foundations Of Wave Phenomena: Complete Version, Charles G. Torre

Foundations of Wave Phenomena

This is the complete version of Foundations of Wave Phenomena. Version 8.3.1.


Please click here to explore the components of this work.


True Random Number Generators, Jade Geng Jan 2023

True Random Number Generators, Jade Geng

Senior Projects Spring 2023

Quantum Random Number Generators(QRNGs), or True Random Number Generators, generate random numbers based on naturally unpredictable(or hard-to-predict) sources. Their unpredictability results in a broad application in cryptography and technology. Their sources range from nuclear decay gamma rays to cosmic rays, then to quantum optics. This thesis aims to explore various randomness sources and compare their efficiency by running a series of randomness tests. The specific setup for each random number generator will also be presented.


Computational Modeling, Simulation, And Potential Applications Of Optical Stochastic Cooling, Austin J. Dick Jan 2023

Computational Modeling, Simulation, And Potential Applications Of Optical Stochastic Cooling, Austin J. Dick

Graduate Research Theses & Dissertations

With the rising demand for intense particles beams, much research is being conducted in the area of particle beam cooling. One of these methods, called Stochastic Cooling (SC) (developed at CERN in the 1970's), delivered a feedback method to improve the quality and lifetime of circulating proton beams by reducing their 6D phase-space and has been widely implemented in a number of hadron machines. However, traditional stochastic cooling schemes are limited by the bandwidth of microwave frequency systems. Optical Stochastic Cooling (OSC) is a promising extension of the stochastic cooling beam cooling technique. OSC instead uses optical wavelengths which allows …


A High-Precision Electron Emission Model: Computational Methods For Nanoscale Structures, Alister J. Tencate Jan 2023

A High-Precision Electron Emission Model: Computational Methods For Nanoscale Structures, Alister J. Tencate

Graduate Research Theses & Dissertations

The high-intensity, high-brightness and precision frontiers for charged particle beams are an increasingly important focus for study. Electron microscopy has demonstrated high quality beams from a single nanotip emitter, and cathodes of structured nanoscale arrays show promise as ultracold electron sources. Optimization of the cathode design for precision applications necessitates a detailed treatment of the interplay between the structure geometry, quantum mechanical emission mechanism, and electromagnetic interactions between the emitted electrons and the boundary interface. This dissertation details the numerical tools developed to simulate these processes efficiently with enough fidelity to be accurate even in the ultracold regime.

Conventional simulation …


Chemometrics And Spectroscopic Analyses Of Peganum Harmala Plant’S Seeds By Laser‐Induced Breakdown Spectroscopy, Tahani A. Alrebdi, Amir Fayyaz, Haroon Asghar, Asif Kamal, Javed Iqbal, Naveed K. Piracha Jan 2023

Chemometrics And Spectroscopic Analyses Of Peganum Harmala Plant’S Seeds By Laser‐Induced Breakdown Spectroscopy, Tahani A. Alrebdi, Amir Fayyaz, Haroon Asghar, Asif Kamal, Javed Iqbal, Naveed K. Piracha

2023 Faculty Bibliography

In the present work, the rapid identification of elements and their relative chemical com‐ position in various Peganum harmala seed samples were investigated using a calibration‐free laser‐ induced breakdown spectroscopy technique (CF‐LIBS). A pulsed Nd:YAG laser‐source with a 5 ns pulse‐duration, and 10 Hz pulse repetition rates providing 400 and 200 mJ energy at 1064 and 532 nm wavelength, respectively, was focused on the Peganum harmala seed samples for ablation. A LIBS 2000+ spectrometer within the wavelength range (200 to 720 nm), emission‐spectra were recorded. The measured spectra of the Peganum harmala sample gives spectral lines of Carbon (C), Magnesium …


Nudyclr: Nuclear Dynamic Co-Learned Representations, Víctor Samuel Pérez-Díaz Jan 2023

Nudyclr: Nuclear Dynamic Co-Learned Representations, Víctor Samuel Pérez-Díaz

2023 REYES Proceedings

NuCLR (Nuclear Co-Learned Representations) is a cutting-edge multi-task deep learning framework designed to predict essential nuclear observables, including binding energies, decay energies, and nuclear charge radii. As part of the REYES Mentorship Program, we investigated the application of dynamic loss weighting to further refine NuCLR’s predictive performance. Our findings indicate that while weighting strategies can enhance accuracy in specific tasks, such as binding energy prediction, they may underperform in others. Equal Weighting (EW), the original method employed by NuCLR, demonstrated consistent performance across multiple tasks, affirming its robustness. This report succinctly presents the developments and results of the mentorship program …


Resonance Signatures In 𝜋+𝜋− Scattering: Theoretical Analysis And Interpretation, Mayul Verma Jan 2023

Resonance Signatures In 𝜋+𝜋− Scattering: Theoretical Analysis And Interpretation, Mayul Verma

2023 REYES Proceedings

Hadron colour confinement, a phenomenon central to Quantum Chromodynamics (QCD), presents a formidable challenge in theoretical physics. The non-perturbative nature of confinement necessitates innovative approaches to the production of and reaction mechanisms between these subatomic particles. In the pursuit of comprehending the fundamental constituents of matter, particle resonances assume a pivotal role. Through the utilization of advanced methodologies like 𝑆-Matrix formulations, more profound insights into resonance phenomena and their effects on the dynamics of particle interactions can be attained. This research paper embarks on a mathematical journey that holds the potential to shed light on the intricate structure of particle …


Algebraic Tunnelling, Gaurab Sedhain Jan 2023

Algebraic Tunnelling, Gaurab Sedhain

2023 REYES Proceedings

We study the quantum phenomenon of tunnelling in the framework of algebraic quantum theory, motivated by the tunnelling aspects of false vacuum decay. We see that resolvent C*-algebra, proposed relatively recently by Buchholz and Grundling rather than Weyl algebra provides an appropriate framework for treating the dynamics of non-free quantum mechanical system as an algebraic automorphism. At the end, we propose to investigate false vacuum decay in algebraic quantum field theoretic setting in terms of the two-point correlation function which gives us the tunneling probability, with the corresponding C*-algebraic construction.


Fabrication And Investigation Of Microfluidic Devices That Produce Non-Linear Chemical Gradients, Elijah L. Waters Jan 2023

Fabrication And Investigation Of Microfluidic Devices That Produce Non-Linear Chemical Gradients, Elijah L. Waters

Electronic Theses and Dissertations

Investigation of cell chemotaxis requires controlled chemical gradients. We investigated microfluidic devices that could enhance small populations' cell assays because of their ability to generate various chemical gradients. Our five designs generate different chemical concentration landscapes that we can easily convert into tools to study cell response to growth factors. Gradient landscapes occurred by splitting and mixing two input fluid concentrations using bifurcations, trifurcations, and Y-mixing junctions in three consecutive steps. Such fluid flow manipulations resulted in nine concentration streams entering a 0.54-mm-wide gradient chamber. The first design used a 1:1 ratio Y-mixer (unbiased) when blending two concentrations, resulting in …


The Lagrangian Formulation For Wave Motion With A Shear Current And Surface Tension, Conor Curtin, Rossen Ivanov Jan 2023

The Lagrangian Formulation For Wave Motion With A Shear Current And Surface Tension, Conor Curtin, Rossen Ivanov

Articles

The Lagrangian formulation for the irrotational wave motion is straightforward and follows from a Lagrangian functional which is the difference between the kinetic and the potential energy of the system. In the case of fluid with constant vorticity, which arises for example when a shear current is present, the separation of the energy into kinetic and potential is not at all obvious and neither is the Lagrangian formulation of the problem. Nevertheless, we use the known Hamiltonian formulation of the problem in this case to obtain the Lagrangian density function, and utilising the Euler-Lagrange equations we proceed to derive some …


Not Your Typical Tower Of Sauron, John Adam Jan 2023

Not Your Typical Tower Of Sauron, John Adam

Mathematics & Statistics Faculty Publications

The picture is of the tapering Chester Shot Tower, located in Chester, England. It was built in 1799 for the manufacture of lead shot for use in the Napoleonic Wars. Molten lead was poured through a sieve at the top of the tower, with the tiny droplets forming perfect spheres during the fall; these were then cooled in a vat of water at the base. This process was less labor intensive than an earlier method using molds. It is the oldest of the three remaining shot towers in the UK.

Question 1: Using the parked van at the base, estimate …


Realizing The Heteromorphic Superlattice: Repeated Heterolayers Of Amorphous Insulator And Polycrystalline Semiconductor With Minimal Interface Defects, Woongkyu Lee, Xianyu Chen, Qing Shao, Sung Il Baik, Sungkyu Kim, David Seidman, Michael Bedzyk, Vinayak Dravid, John B. Ketterson, Julia E. Medvedeva, Robert P.H. Chang, Matthew A. Grayson Jan 2023

Realizing The Heteromorphic Superlattice: Repeated Heterolayers Of Amorphous Insulator And Polycrystalline Semiconductor With Minimal Interface Defects, Woongkyu Lee, Xianyu Chen, Qing Shao, Sung Il Baik, Sungkyu Kim, David Seidman, Michael Bedzyk, Vinayak Dravid, John B. Ketterson, Julia E. Medvedeva, Robert P.H. Chang, Matthew A. Grayson

Physics Faculty Research & Creative Works

An Unconventional "Heteromorphic" Superlattice (HSL) is Realized, Comprised of Repeated Layers of Different Materials with Differing Morphologies: Semiconducting Pc-In2O3 Layers Interleaved with Insulating A-MoO3 Layers. Originally Proposed by Tsu in 1989, Yet Never Fully Realized, the High Quality of the HSL Heterostructure Demonstrated Here Validates the Intuition of Tsu, Whereby the Flexibility of the Bond Angle in the Amorphous Phase and the Passivation Effect of the Oxide at Interfacial Bonds Serve to Create Smooth, High-Mobility Interfaces. the Alternating Amorphous Layers Prevent Strain Accumulation in the Polycrystalline Layers While Suppressing Defect Propagation Across the HSL. for the …


Observation Of Gapless Nodal-Lines In A Rare-Earth-Based Compound, Robert Smith Jan 2023

Observation Of Gapless Nodal-Lines In A Rare-Earth-Based Compound, Robert Smith

Honors Undergraduate Theses

This thesis aims to contribute to the understanding of quantum materials by employing a combination of experimental techniques, such as angle-resolved photoemission spectroscopy and magnetic and transport measurements. Further collaborative support in the form of first-principles calculations is included and discussed in tandem. In this thesis, a lanthanide-based semimetal of the ZrSiS type, is investigated. Multiple nodal lines which remain gapless are observed along the X-R direction of the Brillouin zone. We also present a nodal line that is observed further below the Fermi level and aligned in the G-M direction; this nodal line appears to be sensitive to light …