Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 751 - 780 of 36522

Full-Text Articles in Physical Sciences and Mathematics

Godel, Escherian Staircase And Possibility Of Quantum Wormhole With Liquid Crystalline Phase Of Iced-Water - Part Ii: Experiment Description, Victor Christianto, T. Daniel Chandra, Florentin Smarandache Dec 2023

Godel, Escherian Staircase And Possibility Of Quantum Wormhole With Liquid Crystalline Phase Of Iced-Water - Part Ii: Experiment Description, Victor Christianto, T. Daniel Chandra, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

The present article was partly inspired by G. Pollack’s book, and also Dadoloff, Saxena & Jensen (2010). As a senior physicist colleague and our friend, Robert N. Boyd, wrote in a journal (JCFA, Vol. 1, No. 2, 2022), for example, things and Beings can travel between Universes, intentionally or unintentionally [4]. In this short remark, we revisit and offer short remark to Neil Boyd’s ideas and trying to connect them with geometry of musical chords as presented by D. Tymoczko and others, then to Escherian staircase and then to Jacob’s ladder which seems to pointto possibility to interpret Jacob’s vision …


Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost Dec 2023

Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost

All Dissertations

In confocal single-molecule FRET experiments, the joint distribution of FRET efficiency and donor lifetime distribution can reveal underlying molecular conformational dynamics via deviation from their theoretical Forster relationship. This shift is referred to as a dynamic shift. In this study, we investigate the influence of the free energy landscape in protein conformational dynamics on the dynamic shift by simulation of the associated continuum reaction coordinate Langevin dynamics, yielding a deeper understanding of the dynamic and structural information in the joint FRET efficiency and donor lifetime distribution. We develop novel Langevin models for the dye linker dynamics, including rotational dynamics, based …


Godel, Escherian Staircase And Possibility Of Quantum Wormhole With Liquid Crystalline Phase Of Iced-Water - Part I: Theoretical Underpinning, Victor Christianto, T. Daniel Chandra, Florentin Smarandache Dec 2023

Godel, Escherian Staircase And Possibility Of Quantum Wormhole With Liquid Crystalline Phase Of Iced-Water - Part I: Theoretical Underpinning, Victor Christianto, T. Daniel Chandra, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

As a senior physicist colleague and our friend, Robert N. Boyd, wrote in a journal (JCFA, Vol. 1,. 2, 2022), Our universe is but one page in a large book [4]. For example, things and Beings can travel between Universes, intentionally or unintentionally. In this short remark, we revisit and offer short remark to Neil’s ideas and trying to connect them with geometrization of musical chords as presented by D. Tymoczko and others, then to Escher staircase and then to Jacob’s ladder which seems to point to possibility to interpret Jacob’s vision as described in the ancient book of Genesis …


Generative Adversarial Game With Tailored Quantum Feature Maps For Enhanced Classification, Anais Sandra Nguemto Guiawa Dec 2023

Generative Adversarial Game With Tailored Quantum Feature Maps For Enhanced Classification, Anais Sandra Nguemto Guiawa

Doctoral Dissertations

In the burgeoning field of quantum machine learning, the fusion of quantum computing and machine learning methodologies has sparked immense interest, particularly with the emergence of noisy intermediate-scale quantum (NISQ) devices. These devices hold the promise of achieving quantum advantage, but they grapple with limitations like constrained qubit counts, limited connectivity, operational noise, and a restricted set of operations. These challenges necessitate a strategic and deliberate approach to crafting effective quantum machine learning algorithms.

This dissertation revolves around an exploration of these challenges, presenting innovative strategies that tailor quantum algorithms and processes to seamlessly integrate with commercial quantum platforms. A …


Investigation Of The Chemical And Electronic Structure Of A 2h Phase Mos2 Single Crystal, Mary Blankenship Dec 2023

Investigation Of The Chemical And Electronic Structure Of A 2h Phase Mos2 Single Crystal, Mary Blankenship

UNLV Theses, Dissertations, Professional Papers, and Capstones

Molybdenum disulfide has a wide range of applications in energy conversion devices, like thin-film solar cells, batteries, bio sensors, and more. Although the properties of MoS2 and other transition metal dichalcogenides (TMDC) have been widely studied, disagreements and discrepancies regarding its electronic structure remain.

In this thesis, a highly-oriented synthetic 2H phase MoS2 single crystal is investigated using a toolchest of spectroscopic techniques to uncover its chemical and electronic properties. Lab-based x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), inverse photoemission spectroscopy (IPES), and low energy electron diffraction (LEED) were performed at UNLV and combined with resonant inelastic soft …


Investigating Van Der Waals Josephson Junctions With 2h-Nbse2 And 1t’-Wte2, Kristine Lorraine Haley Dec 2023

Investigating Van Der Waals Josephson Junctions With 2h-Nbse2 And 1t’-Wte2, Kristine Lorraine Haley

UNLV Theses, Dissertations, Professional Papers, and Capstones

Josephson junctions have garnered significant attention due to their unique electronic properties and applications in quantum devices. In this thesis, we investigate the fabrication processes and characterization of two-dimensional (2D) Josephson junctions consisting of layered van der Waals materials: niobium diselenide (2H-NbSe2) and few layered tungsten ditelluride (1T’-WTe2). The reduction of dimensionality can bring forth unique characteristics in certain materials that are not seen in their bulk counterparts, making them prime candidates for physical exploration. 2H-NbSe2 is an s-wave superconductor at temperatures near and below 7 K. 1T’-WTe2 is a semimetal in bulk but …


Actinide Behavior In Soft Ligand Environments And Higher Oxidation States Of Neptunium In Aqueous Media With Solid-State Synthesis Of Np(Vii) Compounds, Kelly Floyd Seeley Dec 2023

Actinide Behavior In Soft Ligand Environments And Higher Oxidation States Of Neptunium In Aqueous Media With Solid-State Synthesis Of Np(Vii) Compounds, Kelly Floyd Seeley

UNLV Theses, Dissertations, Professional Papers, and Capstones

The fundamental properties of Uranium and Neptunium were investigated with Powder X-Ray Diffraction (PXRD) to study the behavior or 5f electrons with chalcogen, alkali metals, and alkaline earth metals. Two novel compounds were generated: NaCuUS3 and NaCuNpS3. There are several crystal structures that form in the family of AMM’Q (A = s-block, M = d-block, M’ = d-block or f-block, and Q = chalcogen), with oxidation states of A1+, M1+, M’4+, and Q2- ions from the family of type I compounds. Work was continued to …


Radiation Exposure Calibration Of The Al2o3:C With Radium-226 And Cesium-137 Using The Osl Method, Selma Tepeli Aydin Dec 2023

Radiation Exposure Calibration Of The Al2o3:C With Radium-226 And Cesium-137 Using The Osl Method, Selma Tepeli Aydin

All Theses

Optically stimulated luminescence (OSL) dosimetry was utilized to calibrate Al2O3:C powder dosimeters, available commercially as the nanoDot® from Landauer Inc., and compare the dosimeter response to radium-226 (226Ra) and cesium-137 (137Cs). The signal from the OSL was quantified using a microSTARii® OSL reader also produced by Landauer Inc. Dose-response curves were developed for 226Ra and 137Cs experiments (5 dosimeters each) at thirteen absorbed doses. Individual dosimeter response was tracked by serial number. Linear regression analysis was performed to determine if there were significant differences between the intercepts of the …


Development Of Back-Scatter And Pile-Up Identification For Ucna+, Amelia Greathouse Dec 2023

Development Of Back-Scatter And Pile-Up Identification For Ucna+, Amelia Greathouse

Undergraduate Honors Theses

The UCNA Experiment at the Los Alamos Neutron Science Center (LANSCE) uses

an electron spectrometer to observe angular correlations between the neutron spin and the momenta of beta particles emitted during the process of beta (β) decay. Combined with neutron lifetime measurements, these observations probe physics beyond the standard model. In recent years there has been an effort to modernize the equipment to reduce the physical limitations of the experiment. The new prototype helps to reduce error via use of silicon photo-multipliers (SiPMs) and the SiPMs also have a greater quantum efficiency than the photomultiplier tubes (PMTs). However, there is …


Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav Dec 2023

Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav

Theses and Dissertations

Recent advances in additive manufacturing technologies have already led to wide-scale adoption of 3D-printed parts in various industries. The expansion in choice of materials that can be processed, particularly using Fused Deposition Modeling (FDM), and the steady advancements in dimensional accuracy control have extended the range of applications far beyond rapid prototyping. However, additive manufacturing still has considerable limitations compared to traditional and subtractive manufacturing processes. This work addresses limitations associated with the as-deposited surface roughness of 3D-printed parts. The effects of roughness-induced stress concentrations were studied on ultimate tensile strength and fatigue life. The samples were manufactured using a …


Lung Dosimetry Model Of Inhaled 222rn For Workers At Selected Building Material Factories In Erbil City, Iraq, Sardar Qader Othman, Ali Hassan Ahmed, Sarbaz Ibrahim Mohammed Nov 2023

Lung Dosimetry Model Of Inhaled 222rn For Workers At Selected Building Material Factories In Erbil City, Iraq, Sardar Qader Othman, Ali Hassan Ahmed, Sarbaz Ibrahim Mohammed

Polytechnic Journal

Radon gas can cause lung harm, leading to extensive research on the biological effects of radon exposure in human lungs under various environmental conditions. The study estimates radon progeny doses for workers in Erbil city's building materials industries, focusing on alpha particle energy deposition, particle clearance, and lung deposition. Using a home condition of 1 Bq.m-3, radon progeny particle-absorbed doses in the trachea, bronchi, bronchioles, alveolar-interstitial sections, and lungs were determined in the first scenario. The 1 Bq.m-3 is replaced with the radon level for each factory to prepare its atmosphere in the second scenario. For the first scenario, the …


Uv Dynamics Of Different Ring Molecules Studied By Ultrafast Electron Diffraction, Sajib Kumar Saha Nov 2023

Uv Dynamics Of Different Ring Molecules Studied By Ultrafast Electron Diffraction, Sajib Kumar Saha

Dissertations and Doctoral Documents from University of Nebraska-Lincoln, 2023–

Understanding natural light-induced phenomena requires a direct viewing of atomic motion during structural evolution, which, in turn, facilitates controlling and manipulating these light-induced processes. Ultrafast Electron Diffraction (UED) is a structure-sensitive technique that can probe electronic and nuclear dynamics at sub-angstrom spatial and femtosecond time scales. UED has become a vital tool for studying photo-induced molecular dynamics and underlying science. Organic ring systems are prevalent in biology, materials, and pharmaceuticals. Their synthesis and transformation are fundamental in synthetic chemistry, influencing various fields. We used UV photons to photo-excite different cyclic molecules and investigated their photo-dynamics using gas phase UED. The …


Microscale To Mesoscale Modeling Of The Ocean Under Tropical Cyclones: Effects Of Sea Spray And Surfactants On Tropical Cyclone Intensity And Air-Sea Gas Exchange, Breanna Lynn Cain Vanderplow Nov 2023

Microscale To Mesoscale Modeling Of The Ocean Under Tropical Cyclones: Effects Of Sea Spray And Surfactants On Tropical Cyclone Intensity And Air-Sea Gas Exchange, Breanna Lynn Cain Vanderplow

All HCAS Student Capstones, Theses, and Dissertations

Tropical cyclone intensity prediction remains a challenge despite computational and observational developments because successful intensity forecasting requires implementing a multitude of atmospheric and oceanic processes. Hurricane Maria 2017 and Hurricane Dorian 2019 serve as prime examples of rapidly intensifying storms that devastated communities in the Caribbean. A lack of understanding and parameterization of crucial physics involved in tropical cyclone intensity in existing forecast models may have led to these and other forecasting errors.

Microscale physical processes at the air-sea interface are a major factor in intensification of tropical cyclones that are often unaccounted for in forecasting models since they are …


Study Of Radon Concentrations In Some Of Public Ground Water Wells, Sana'a - Yemen, Ahmed Khalid Abdul-Rahim, Najwa Ahmed Al-Maqtari Nov 2023

Study Of Radon Concentrations In Some Of Public Ground Water Wells, Sana'a - Yemen, Ahmed Khalid Abdul-Rahim, Najwa Ahmed Al-Maqtari

Hadhramout University Journal of Natural & Applied Sciences

This study aims to assess radon-222 concentration levels in public ground water wells in Sana'a city, Yemen. Forty-three well water samples were collected from the study area. The alpha spectroscopy method was used to measure the samples using a RAD7 detector. The radon concentrations were in the range from 0.82 ± 0.38 Bq/L to 38.73 ± 2.98 Bq/L. A moderate correlation of radon levels with aquifer type was observed. Also, weak correlations of radon levels with electric conductivity, pH, and temperature, and no correlation with measured heavy metals were observed. Annual effective dose rates () were calculated and were found …


Capturing The Generation And Structural Transformations Of Molecular Ions, Jun Heo, Doeyeong Kim, Alekos Segalina, Hosung Ki, Doo-Sik Ahn, Seonggon Lee, Jungmin Kim, Yongjun Cha, Kyung Won Lee, Jie Yang, J. Pedro F. Nunes, Xijie Wang, Hyotcherl Ihee Nov 2023

Capturing The Generation And Structural Transformations Of Molecular Ions, Jun Heo, Doeyeong Kim, Alekos Segalina, Hosung Ki, Doo-Sik Ahn, Seonggon Lee, Jungmin Kim, Yongjun Cha, Kyung Won Lee, Jie Yang, J. Pedro F. Nunes, Xijie Wang, Hyotcherl Ihee

Department of Physics and Astronomy: Faculty Publications

Molecular ions are ubiquitous and play pivotal roles1–3 in many reactions, particularly in the context of atmospheric and interstellar chemistry4–6. However, their structures and conformational transitions7,8, particularly in the gas phase, are less explored than those of neutral molecules owing to experimental difficulties. A case in point is the halonium ions9–11, whose highly reactive nature and ring strain make them short-lived intermediates that are readily attacked even by weak nucleophiles and thus challenging to isolate or capture before they undergo further reaction. Here we show that megaelectronvolt ultrafast electron diffraction (MeV-UED)12–14, …


Exploring Non-Orientable Topology: Deriving The Poincaré Conjecture And Possibility Of Experimental Vindication With Liquid Crystal, Victor Christianto, Florentin Smarandache Nov 2023

Exploring Non-Orientable Topology: Deriving The Poincaré Conjecture And Possibility Of Experimental Vindication With Liquid Crystal, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

This review investigates the potential of non-orientable topology as a fundamental framework for understanding the Poincaré conjecture and its implications across various scientific disciplines. Integrating insights from Dokuchaev (2020), Rapoport, Christianto, Chandra, Smarandache (under review), and other pioneering works, this article explores the theoretical foundations linking non-orientable spaces to resolving the Poincaré conjecture and its broader implications in theoretical physics, geology, cosmology, and biology.


Patterned Heating Induced Propulsion, Saajid A. Aman Nov 2023

Patterned Heating Induced Propulsion, Saajid A. Aman

Electronic Thesis and Dissertation Repository

This study explores propulsion effects generated by patterned heating acting on smooth and corrugated surfaces. The model problem assumes that the upper plate moves freely, and the lower plate is stationary, equipped with grooves, and exposed to spatially distributed heating. Our findings identify two distinct propulsion effects: thermal streaming and thermal drift. Thermal streaming occurs when given sufficient heating intensity with net flow in the left or right direction characterized by a pitchfork bifurcation. The efficiency of this technique can be controlled using the wavelength of heating. Thermal drift represents a pattern interaction effect. Its strength depends on the relative …


Prediction Of Giant Tunneling Magnetoresistance In Ruo2/Tio2/Ruo2 (110) Antiferromagnetic Tunnel Junctions, Yuan-Yuan Jiang, Zi-An Wang, Kartik Samanta, Shu-Hui Zhang, Rui-Chun Xiao, W. J. Lu, Y. P. Sun, Evgeny Y. Tsymbal, Ding-Fu Shao Nov 2023

Prediction Of Giant Tunneling Magnetoresistance In Ruo2/Tio2/Ruo2 (110) Antiferromagnetic Tunnel Junctions, Yuan-Yuan Jiang, Zi-An Wang, Kartik Samanta, Shu-Hui Zhang, Rui-Chun Xiao, W. J. Lu, Y. P. Sun, Evgeny Y. Tsymbal, Ding-Fu Shao

Department of Physics and Astronomy: Faculty Publications

Using first-principles quantum-transport calculations, we investigate spin-dependent electronic and transport properties of antiferromagnetic tunnel junctions (AFMTJs) that consist of (110)-oriented antiferromagnetic (AFM) metal RuO2 electrodes and an insulating TiO2 tunneling barrier. We predict the emergence of a giant tunneling magnetoresistance (TMR) effect in a wide energy window, a series of barrier layer thicknesses, and different interface terminations, indicating the robustness of this effect. We show that the predicted TMR cannot be explained in terms of the global transport spin-polarization of RuO2 (110) but is well understood based on matching the momentum-dependent spin-polarized conduction channels of the two …


Analytic Distribution Of The Optimal Cross-Correlation Statistic For Stochastic Gravitational-Wave-Background Searches Using Pulsar Timing Arrays, ‪Jeffrey S. Hazboun, Patrick M. Meyers, Joseph D. Romano, Xavier Siemens, Anne M. Archibald Nov 2023

Analytic Distribution Of The Optimal Cross-Correlation Statistic For Stochastic Gravitational-Wave-Background Searches Using Pulsar Timing Arrays, ‪Jeffrey S. Hazboun, Patrick M. Meyers, Joseph D. Romano, Xavier Siemens, Anne M. Archibald

Physics and Astronomy Faculty Publications and Presentations

We show via both analytical calculation and numerical simulation that the optimal cross-correlation statistic (OS) for stochastic gravitational-wave-background (GWB) searches using data from pulsar timing arrays follows a generalized chi-squared (GX2) distribution—i.e., a linear combination of chi-squared distributions with coefficients given by the eigenvalues of the quadratic form defining the statistic. This observation is particularly important for calculating the frequentist statistical significance of a possible GWB detection, which depends on the exact form of the distribution of the OS signal-to-noise ratio ρˆ ≡ Aˆ 2 gw=σ0 in the absence of GW-induced cross correlations (i.e., the null distribution). Previous discussions of …


Acoustically Levitated Whispering-Gallery Mode Microlasers, H. M. Reynoso-De La Cruz, E. D. Hernández-Campos, E. Ortiz-Ricardo, A. Martínez-Borquez, I. Rosas-Román, V. Contreras, G. Ramos-Ortiz, B. Mendoza-Santoyo, Cecilia Zurita-Lopez, R. Castro-Beltrán Nov 2023

Acoustically Levitated Whispering-Gallery Mode Microlasers, H. M. Reynoso-De La Cruz, E. D. Hernández-Campos, E. Ortiz-Ricardo, A. Martínez-Borquez, I. Rosas-Román, V. Contreras, G. Ramos-Ortiz, B. Mendoza-Santoyo, Cecilia Zurita-Lopez, R. Castro-Beltrán

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Acoustic levitation has become a crucial technique for contactless manipulation in several fields, particularly in biological applications. However, its application in the photonics field remains largely unexplored. In this study, we implement an affordable and innovative phased-array levitator that enables stable trapping in the air of micrometer dye-doped droplets, thereby enabling the creation of microlasers. For the first time, this paper presents a detailed performance of the levitated microlaser cavity, supported by theoretical analysis concerning the hybrid technology based on the combination of whispering-gallery modes and acoustic fields. The pressure field distribution inside the acoustic cavity is numerically solved and …


Dynamics And Scaling Of Particle Streaks In High-Reynolds-Number Turbulent Boundary Layers, Tim Berk, Filippo Coletti Nov 2023

Dynamics And Scaling Of Particle Streaks In High-Reynolds-Number Turbulent Boundary Layers, Tim Berk, Filippo Coletti

Mechanical and Aerospace Engineering Faculty Publications

Inertial particles in wall-bounded turbulence are known to form streaks, but experimental evidence and predictive understanding of this phenomenon is lacking, especially in regimes relevant to atmospheric flows. We carry out wind tunnel measurements to investigate this process, characterizing the transport of microscopic particles suspended in turbulent boundary layers. The friction Reynolds number Re𝜏 = O(104) allows for significant scale separation and the emergence of large-scale motions, while the range of viscous Stokes number St+ = 18–870 is relevant to the transport of dust and fine sand in the atmospheric surface layer. We …


A Comparative Study On The Rheological Properties Of Upper Convected Maxwell Fluid Along A Permeable Stretched Sheet, Sara I. Abdelsalam, W. Abbas, A. M. Megahed, A. M. Said Nov 2023

A Comparative Study On The Rheological Properties Of Upper Convected Maxwell Fluid Along A Permeable Stretched Sheet, Sara I. Abdelsalam, W. Abbas, A. M. Megahed, A. M. Said

Basic Science Engineering

The objective of this paper is to examine the flow of a non-Newtonian Maxwell fluid induced by a permeable stretching sheet in motion within a porous medium. The research incorporates the Cattaneo-Christov heat flux model to study the heat transfer process. The utilization of the Cattaneo-Christov heat flux approach becomes relevant in scenarios involving materials with high thermal conductivity or during short time intervals. Consequently, the current investigation holds significant importance. It is assumed that the viscosity of the Maxwell fluid changes exponentially as the temperature changes. The modeling of the physical phenomena being investigated takes into account the effects …


Enhanced Luminescence Efficiency In Eu-Doped Gan Superlattice Structures Revealed By Terahertz Emission Spectroscopy, Fumikazu Murakami, Atsushi Takeo, Brandon Mitchell, Volkmar Dierolf, Yasufumi Fujiwara, Masayoshi Tonouchi Nov 2023

Enhanced Luminescence Efficiency In Eu-Doped Gan Superlattice Structures Revealed By Terahertz Emission Spectroscopy, Fumikazu Murakami, Atsushi Takeo, Brandon Mitchell, Volkmar Dierolf, Yasufumi Fujiwara, Masayoshi Tonouchi

Physics & Engineering Faculty Publications

Eu-doped Gallium nitride (GaN) is a promising candidate for GaN-based red light-emitting diodes, which are needed for future micro-display technologies. Introducing a superlattice structure comprised of alternating undoped and Eu-doped GaN layers has been observed to lead to an order-of-magnitude increase in output power; however, the underlying mechanism remains unknown. Here, we explore the optical and electrical properties of these superlattice structures utilizing terahertz emission spectroscopy. We find that ~0.1% Eu doping reduces the bandgap of GaN by ~40 meV and increases the index of refraction by ~20%, which would result in potential barriers and carrier confinement within a superlattice …


Search For Evidence Of Baryogenesis And Dark Matter In B+→Ψd+P Decays At Babar, J. P. Lees, V. Poireau, E. Grauges, A. Palano, G. Eigen, D. N. Brown, Yu. G. Kolomensky, M. Fritsch, H. Koch, R. Cheaib, C. Hearty, T. S. Mattison, J. A. Mckenna, R. Y. So, V. E. Blinov, A. R. Buzykaev, V. P. Druzhinin, E. A. Kravchenko, Milind Purohit, Et. Al. Nov 2023

Search For Evidence Of Baryogenesis And Dark Matter In B+→Ψd+P Decays At Babar, J. P. Lees, V. Poireau, E. Grauges, A. Palano, G. Eigen, D. N. Brown, Yu. G. Kolomensky, M. Fritsch, H. Koch, R. Cheaib, C. Hearty, T. S. Mattison, J. A. Mckenna, R. Y. So, V. E. Blinov, A. R. Buzykaev, V. P. Druzhinin, E. A. Kravchenko, Milind Purohit, Et. Al.

Faculty Publications

A new dark sector antibaryon, denoted ψD, could be produced in decays of B mesons. This Letter presents a search for B+ψD+p (and the charge conjugate) decays in e+e annihilations at 10.58 GeV, using data collected in the BABAR experiment. Data corresponding to an integrated luminosity of 398 fb−1 are analyzed. No evidence for a signal is observed. Branching fraction upper limits in the range from 10−7–10−5 are obtained at 90% confidence level for masses of 1.0<D< 4.3 GeV/c2. The result is also reinterpreted to provide …


Assessing The Robustness Of Sound Horizon-Free Determinations Of The Hubble Constant, Tristan L. Smith, V. Poulin, T. Simon Nov 2023

Assessing The Robustness Of Sound Horizon-Free Determinations Of The Hubble Constant, Tristan L. Smith, V. Poulin, T. Simon

Physics & Astronomy Faculty Works

The Hubble tension can be addressed by modifying the sound horizon (rs) before recombination, triggering interest in early universe estimates of the Hubble constant, H0, independent of rs. Constraints on H0 from an rs-free analysis of the full shape BOSS galaxy power spectra within Λ CDM were recently reported and used to comment on the viability of physics beyond Λ CDM. Here we demonstrate that rs-free analyses with current data depend on both the model and the priors placed on the cosmological parameters, such that Λ CDM analyses …


Detailed Characterization Of A Khz-Rate Laser-Driven Fusion At A Thin Liquid Sheet With A Neutron Detection Suite, Benjamin M. Knight, Connor Gautam, Colton R. Stoner, Bryan V. Egner, Joseph R. Smith, Christopher M. Orban, Juan J. Manfredi, Kyle Frische, Michael L. Dexter, Enam A. Chowdury, Anil K. Patnaik Nov 2023

Detailed Characterization Of A Khz-Rate Laser-Driven Fusion At A Thin Liquid Sheet With A Neutron Detection Suite, Benjamin M. Knight, Connor Gautam, Colton R. Stoner, Bryan V. Egner, Joseph R. Smith, Christopher M. Orban, Juan J. Manfredi, Kyle Frische, Michael L. Dexter, Enam A. Chowdury, Anil K. Patnaik

Faculty Publications

We present detailed characterization of laser driven fusion and neutron production (∼105/second) employing 8 mJ, 40fs laser pulses on a thin (< 1 µm) D2O liquid sheet employing a measurement suite. At relativistic intensity (∼5×1018W/cm2) and high repetition-rate (1 kHz), the system produces consistent D-D fusion, allowing for consistent neutron generation. Evidence of D-D fusion neutron production is verified b y a measurement suite with three independent detection systems: an EJ-309 organic scintillator with pulse-shape discrimination, a 3He proportional counter, and a set of 36 bubble detectors. Time-of-flight analysis of the scintillator data shows …


Perovskite Cspbbr3 Solar Cells With Novel Hole-Transporting Layer Of Metal Complexes, Liqiu Zheng, Evynn S. Jackson, Ny'kesha S. Warren, Robert Owor, Zhongrui Li Nov 2023

Perovskite Cspbbr3 Solar Cells With Novel Hole-Transporting Layer Of Metal Complexes, Liqiu Zheng, Evynn S. Jackson, Ny'kesha S. Warren, Robert Owor, Zhongrui Li

Georgia Journal of Science

For the first time, the novel application of Schiff-base copper complexes in all-inorganic perovskite CsBrBr3 solar cells has been explored and turns out they could be utilized as effective hole-transporting materials. Schiff-base copper complexes with halogen ligands (R=Cl and Br) are synthesized with an ease approach at a low cost, both of which exhibit decent power conversion efficiency of 4.55% and 5.71%, respectively, when being constructed into solar devices as hole transport layers. Thanks to high thermal/chemical stability of those Schiff-base metal complexes, the strengthened stability was achieved which is comparable to that of carbon-based CsBrBr3 solar cells. …


Measurement Of Additional Radiation In The Initial-State-Radiation Processes E+E-Μ+Μ- Y And E+E-+- Y At Babar, J. P. Lees, V. Poireau, V. Tisserand, E. Grauges, A. Palano, G. Eigen, D. N. Brown, Yu. G. Kolomensky, M. Fritsch, H. Koch, R. Cheaib, C. Hearty, T. S. Mattison, J. A. Mckenna, R. Y. So, V. E. Blinov, A. R. Buzykaev, V. P. Druzhinin, E. A. Kozyrev, Milind Purohit, Et. Al. Nov 2023

Measurement Of Additional Radiation In The Initial-State-Radiation Processes E+E- →Μ+Μ- Y And E+E- → ℼ+ℼ- Y At Babar, J. P. Lees, V. Poireau, V. Tisserand, E. Grauges, A. Palano, G. Eigen, D. N. Brown, Yu. G. Kolomensky, M. Fritsch, H. Koch, R. Cheaib, C. Hearty, T. S. Mattison, J. A. Mckenna, R. Y. So, V. E. Blinov, A. R. Buzykaev, V. P. Druzhinin, E. A. Kozyrev, Milind Purohit, Et. Al.

Faculty Publications

A dedicated measurement of additional radiation in e+e → µ+µγ and e+eπ+πγ initial-state-radiation events is presented using the full BABAR data sample. For the first time results are presented at next-to- and next-to-next-to-leading order, with one and two additional photons, respectively, for radiation from the initial and final states. Comparison with predictions from PHOKHARA and AFKQED Monte Carlo generators is performed, revealing discrepancies in the one-photon rates and angular distributions for the former. This disagreement has a negligible effect on the BABAR measurement of …


Development Of Antibacterial Neural Stimulation Electrodes Via Hierarchical Surface Restructuring And Atomic Layer Deposition., Henna Khosla, Wesley Seche, Daniel Ammerman, Sahar Elyahoodayan, Gregory A. Caputo, Jeffrey Hettinger, Shahram Amini, Gang Feng Nov 2023

Development Of Antibacterial Neural Stimulation Electrodes Via Hierarchical Surface Restructuring And Atomic Layer Deposition., Henna Khosla, Wesley Seche, Daniel Ammerman, Sahar Elyahoodayan, Gregory A. Caputo, Jeffrey Hettinger, Shahram Amini, Gang Feng

College of Science & Mathematics Departmental Research

Miniaturization and electrochemical performance enhancement of electrodes and microelectrode arrays in emerging long-term implantable neural stimulation devices improves specificity, functionality, and performance of these devices. However, surgical site and post-implantation infections are amongst the most devastating complications after surgical procedures and implantations. Additionally, with the increased use of antibiotics, the threat of antibiotic resistance is significant and is increasingly being recognized as a global problem. Therefore, the need for alternative strategies to eliminate post-implantation infections and reduce antibiotic use has led to the development of medical devices with antibacterial properties. In this work, we report on the development of electrochemically …


Employing A Fractional Basis Set To Solve Nonlinear Multidimensional Fractional Differential Equations, Md. Habibur Rahman, Muhammad I. Bhatti, Nicholas Dimakis Nov 2023

Employing A Fractional Basis Set To Solve Nonlinear Multidimensional Fractional Differential Equations, Md. Habibur Rahman, Muhammad I. Bhatti, Nicholas Dimakis

Physics and Astronomy Faculty Publications and Presentations

Fractional-order partial differential equations have gained significant attention due to their wide range of applications in various fields. This paper employed a novel technique for solving nonlinear multidimensional fractional differential equations by means of a modified version of the Bernstein polynomials called the Bhatti-fractional polynomials basis set. The method involved approximating the desired solution and treated the resulting equation as a matrix equation. All fractional derivatives are considered in the Caputo sense. The resulting operational matrix was inverted, and the desired solution was obtained. The effectiveness of the method was demonstrated by solving two specific types of nonlinear multidimensional fractional …