Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 991 - 1020 of 36527

Full-Text Articles in Physical Sciences and Mathematics

Multi-Agent Deep Reinforcement Learning For Radiation Localization, Benjamin Scott Totten Aug 2023

Multi-Agent Deep Reinforcement Learning For Radiation Localization, Benjamin Scott Totten

Dissertations and Theses

For the safety of both equipment and human life, it is important to identify the location of orphaned radioactive material as quickly and accurately as possible. There are many factors that make radiation localization a challenging task, such as low gamma radiation signal strength and the need to search in unknown environments without prior information. The inverse-square relationship between the intensity of radiation and the source location, the probabilistic nature of nuclear decay and gamma ray detection, and the pervasive presence of naturally occurring environmental radiation complicates localization tasks. The presence of obstructions in complex environments can further attenuate the …


Nalidarturbopauseshear, Titus Yuan Aug 2023

Nalidarturbopauseshear, Titus Yuan

Browse all Datasets

The USU Na lidar has been upgraded to be able to measure temperature and winds in the lower thermosphere up to ~ 115 km routinely. The new capability, coupled with the existing nightglow instruments at USU, enables the investigation of the extreme large wind and shears in this region and their correlation to the atmospheric gravity waves activities in the upper mesosphere.


A Simple Method For Determining Shallow Charge Distributions In Dielectrics Via Pulsed Electroacoustic Measurements, Zachary Gibson, J. R. Dennison Aug 2023

A Simple Method For Determining Shallow Charge Distributions In Dielectrics Via Pulsed Electroacoustic Measurements, Zachary Gibson, J. R. Dennison

Journal Articles

The understanding of charge dynamics in dielectric materials is paramount in mitigating electrostatic discharge events for spacecraft. The most critical spacecraft charging events are found to result from incident electrons in the energy range of 10 keV to 50 keV. The charge embedded in dielectric materials in this energy range are deposited a distance into the material on the order of a few to tens of microns. One way to measure and understand the deposited charge is via pulsed electroacoustic measurements (PEA). However, the typical PEA spatial resolution of ~ 10 μm is not sufficient to resolve or discern charge …


A Search For Relativistic Ejecta In A Sample Of Ztf Broad-Lined Type Ic Supernovae, Alessandra Corsi, Anna Y.Q. Ho, S. Bradley Cenko, Shrinivas R. Kulkarni, Shreya Anand, Sheng Yang, Jesper Sollerman, Gokul P. Srinivasaragavan, Conor M.B. Omand, Arvind Balasubramanian, Dale A. Frail, Christoffer Fremling, Daniel A. Perley, Yuhan Yao, Aishwarya S. Dahiwale, Kishalay De, Alison Dugas, Matthew Hankins, Jacob Jencson, Mansi M. Kasliwal, Anastasios Tzanidakis, Eric C. Bellm, Russ R. Laher, Frank J. Masci, Josiah N. Purdum, Nicolas Regnault Aug 2023

A Search For Relativistic Ejecta In A Sample Of Ztf Broad-Lined Type Ic Supernovae, Alessandra Corsi, Anna Y.Q. Ho, S. Bradley Cenko, Shrinivas R. Kulkarni, Shreya Anand, Sheng Yang, Jesper Sollerman, Gokul P. Srinivasaragavan, Conor M.B. Omand, Arvind Balasubramanian, Dale A. Frail, Christoffer Fremling, Daniel A. Perley, Yuhan Yao, Aishwarya S. Dahiwale, Kishalay De, Alison Dugas, Matthew Hankins, Jacob Jencson, Mansi M. Kasliwal, Anastasios Tzanidakis, Eric C. Bellm, Russ R. Laher, Frank J. Masci, Josiah N. Purdum, Nicolas Regnault

Michigan Tech Publications, Part 2

The dividing line between gamma-ray bursts (GRBs) and ordinary stripped-envelope core-collapse supernovae (SNe) is yet to be fully understood. Observationally mapping the variety of ejecta outcomes (ultrarelativistic, mildly relativistic, or nonrelativistic) in SNe of Type Ic with broad lines (Ic - BL) can provide a key test to stellar explosion models. However, this requires large samples of the rare SN Ic - BL events with follow-up observations in the radio, where fast ejecta can be probed largely free of geometry and viewing angle effects. Here, we present the results of a radio (and X-ray) follow-up campaign of 16 SNe Ic …


Towards Clinical Microscopic Fractional Anisotropy Imaging, Nico Jj Arezza Aug 2023

Towards Clinical Microscopic Fractional Anisotropy Imaging, Nico Jj Arezza

Electronic Thesis and Dissertation Repository

Microscopic fractional anisotropy (µFA) is a diffusion-weighted magnetic resonance imaging (dMRI) metric that is sensitive to neuron microstructural features without being confounded by the orientation dispersion of axons and dendrites. µFA may potentially act as a surrogate biomarker for neurodegeneration, demyelination, and other pathological changes to neuron microstructure with greater specificity than other dMRI techniques that are sensitive to orientation dispersion, such as diffusion tensor imaging. As with many advanced imaging techniques, µFA is primarily used in research studies and has not seen use in clinical settings.

The primary goal of this Thesis was to assess the clinical viability of …


Magnetic Nanodoping: Atomic Control Of Spin States In Cobalt Doped Silver Clusters, Vicente Zamudio-Bayer, Konstantin Hirsch, Lei Ma, Kobe De Knijf, X. S. Xu, Arkadiusz Ławicki, Akira Terasaki, Piero Ferrari, Bernd Von Issendorff, Peter Lievens, Walt A. De Heer, J. Tobias Lau, Ewald Janssens Aug 2023

Magnetic Nanodoping: Atomic Control Of Spin States In Cobalt Doped Silver Clusters, Vicente Zamudio-Bayer, Konstantin Hirsch, Lei Ma, Kobe De Knijf, X. S. Xu, Arkadiusz Ławicki, Akira Terasaki, Piero Ferrari, Bernd Von Issendorff, Peter Lievens, Walt A. De Heer, J. Tobias Lau, Ewald Janssens

Department of Physics and Astronomy: Faculty Publications

The interaction of magnetic dopants with delocalized electron states can result in interesting many-body physics. Here, the magnetic properties of neutral and charged finite silver metal host clusters with a magnetic cobalt atom impurity were investigated experimentally by exploiting the complementary methods of Stern- Gerlach molecular beam deflection and x-ray magnetic circular dichroism spectroscopy and are accompanied by density functional theory calculations and charge transfer multiplet simulations. The influence of the number of valence electrons and the consequences of impurity encapsulation were addressed in free size-selected, singly cobalt-doped silver clusters CoAg0,n+ (n = 2–15). Encapsulation of the …


A Search For Chiral Asymmetry In Secondary Electron Emission From Cysteine Induced By Longitudinally Polarized Electrons, K. J. Ahrendsen, Kenneth Wayne Trantham, D. Tupa, T. J. Gay Aug 2023

A Search For Chiral Asymmetry In Secondary Electron Emission From Cysteine Induced By Longitudinally Polarized Electrons, K. J. Ahrendsen, Kenneth Wayne Trantham, D. Tupa, T. J. Gay

Department of Physics and Astronomy: Faculty Publications

We performed experiments searching for chirality-dependent secondary electron emission for a 141 eV longitudinally spin-polarized electron beam incident on a thick solid cysteine target. We determined the secondary electron yield by measuring the positive current produced when the cysteine target was negatively biased. No spin-dependent effects to a level of 10−3 were found for the secondary electron emission yield.


Electron Beam Lithography And Dimensional Metrology For Fin And Nanowire Devices On Ge, Sige And Geoi Substrates, Nikolay Petkov, Margarita Georgieva, Sinan Bugu, Ray Duffy, Brendan Mccarthy, Maksym Myronov, Ann-Marie Kelleher, Graeme Maxwell, Giorgos Fagas Aug 2023

Electron Beam Lithography And Dimensional Metrology For Fin And Nanowire Devices On Ge, Sige And Geoi Substrates, Nikolay Petkov, Margarita Georgieva, Sinan Bugu, Ray Duffy, Brendan Mccarthy, Maksym Myronov, Ann-Marie Kelleher, Graeme Maxwell, Giorgos Fagas

Physical Sciences Publications

Until now there is no systematic study on the effect of the substrate type on the hydrogen silsesquioxane (HSQ) electron beam lithography (EBL) patterning process. We investigate arrays of line structures with varying width and spacing, starting at 10 nm, exposed at varying dose, and developed by salty NaOH and TMAH developers on group IV semiconductor substrates. We demonstrate that the HSQ EBL process on Ge is much more limited in achieving the smallest obtainable features, having optimal uniformity and fidelity, in comparison to Si. Monte-Carlo simulations of the e-beam/substrate interactions for “pure” Si and Ge substrates, and varying content …


Due Tomorrow, Do Tomorrow: Measuring And Reducing Procrastination Behavior Among Introductory Physics Students In An Online Environment, Zachary Felker Aug 2023

Due Tomorrow, Do Tomorrow: Measuring And Reducing Procrastination Behavior Among Introductory Physics Students In An Online Environment, Zachary Felker

Electronic Theses and Dissertations, 2020-2023

This work is focused on the measurement and prevention of procrastination behavior among college level introductory physics students completing online assignments in the form of mastery-based online learning modules. The research is conducted in two studies. The first study evaluates the effectiveness of offering students the opportunity to earn a small amount of extra credit for completing portions of their homework early. Unsupervised machine learning is used to identify an optimum cutoff duration which differentiates taking a short break during a continuous study session from a long break between two different study sessions. Using this cutoff, the study shows that …


Theoretical Analysis Of Charge Conduction And Rectification In Self-Assembled-Monolayers In Molecular Junctions, Francis Adoah Aug 2023

Theoretical Analysis Of Charge Conduction And Rectification In Self-Assembled-Monolayers In Molecular Junctions, Francis Adoah

Electronic Theses and Dissertations, 2020-2023

As electrical devices shrink to the atomic scale, it is expected that Moore's law will soon be obsolete for semiconductor devices. In 1974, Avriam and Ratner predicted that organic devices could replace semiconductor technology, leading to extensive research on molecular-based organic devices. This dissertation delves into the theoretical frameworks used to examine the transport in molecular junctions and aims to enhance our comprehension of charge transport and conduction properties. The studies presented in this thesis illustrates that a molecule's alteration by just a single atom can change it from an insulator to a conductor, and also that, by fine-tuning the …


Theoretical Framework Of Exchange Coupled Tripartite Spin Systems With Magnetic Anisotropy And Predictions Of Spin And Electronic Transport Properties For Their Use In Quantum Architectures, Eric Switzer Aug 2023

Theoretical Framework Of Exchange Coupled Tripartite Spin Systems With Magnetic Anisotropy And Predictions Of Spin And Electronic Transport Properties For Their Use In Quantum Architectures, Eric Switzer

Electronic Theses and Dissertations, 2020-2023

There has been significant interest in spin systems involving two or more coupled spins as a single logical qubit, particularly for scalable quantum computing architectures. Recent realizations include the so-called singlet-triplet qubits and coupled magnetic molecules. An important class of coupled-spin systems, the three-spin paradigm for spin greater than 1/2, has not yet been fully realized in scalable qubit architectures. In this thesis, I develop the theoretical framework to investigate a class of tripartite spin models for realistic systems. First, I model a spin 1/2 particle (e.g., an electron) and two spin 1 particles (in a dimer arrangement) coupled with …


Multi-Color Fluorescent Microscopy And Deep Learning For Studying Eukaryotic Organelles: Unveiling Cellular Growth In A System Biology Perspective, Shixing Wang Aug 2023

Multi-Color Fluorescent Microscopy And Deep Learning For Studying Eukaryotic Organelles: Unveiling Cellular Growth In A System Biology Perspective, Shixing Wang

Arts & Sciences Electronic Theses and Dissertations

Eukaryotic cells are building blocks to complex living systems, characterized by membrane-bound organelles. Studying how eukaryotic organelles react to cellular growth and size increase is crucial, but it demands biochemical and biophysical manipulations, as well as quantitative observation tools in microscopy. We developed a multi-color yeast strain with tagged fluorescent proteins, enabling systematic measurements of 6 organelles inside each cell using spectral confocal microscopy. These measurements provided insights into how organelle biogenesis is coordinated with cellular size and growth rate regulation via different signaling pathways. To explore cellular growth under dynamic conditions, I utilized deep learning for organelle recognition using …


Electrically Induced Cancellation And Inversion Of Piezoelectricity In Ferroelectric Hf0.5Zr0.5O2, Haidong Lu, Dong-Jik Kim, Hugo Aramberri, Marco Holzer, Pratyush Buragohain, Sangita Dutta, Uwe Schroeder, Veeresh Deshpande, Jorge Íñiguez, Alexei Gruverman, Catherine Dubourdieu Aug 2023

Electrically Induced Cancellation And Inversion Of Piezoelectricity In Ferroelectric Hf0.5Zr0.5O2, Haidong Lu, Dong-Jik Kim, Hugo Aramberri, Marco Holzer, Pratyush Buragohain, Sangita Dutta, Uwe Schroeder, Veeresh Deshpande, Jorge Íñiguez, Alexei Gruverman, Catherine Dubourdieu

Department of Physics and Astronomy: Faculty Publications

HfO2-based thin films hold huge promise for integrated devices as they show full compatibility with semiconductor technologies and robust ferroelectric properties at nanometer scale. While their polarization switching behavior has been widely investigated, their electromechanical response received much less attention so far. Here, we demonstrate that piezoelectricity in Hf0.5Zr0.5O2 ferroelectric capacitors is not an invariable property but, in fact, can be intrinsically changed by electrical field cycling. Hf0.5Zr0.5O2 capacitors subjected to ac cycling undergo a continuous transition from a positive effective piezoelectric coefficient d33 in the pristine state to …


The Quantum Mechanical Background Of Quantum Computing, Isaac Hanna Aug 2023

The Quantum Mechanical Background Of Quantum Computing, Isaac Hanna

The Kabod

Quantum mechanics arose out of the question "Is light a particle or a wave?" and has laid forth a model of reality in which particles are modeled by wave functions. The particle is in a superposition of states and can be entangled with other particles to create more complex systems. Observation of the system collapses the wave function to a single point. By using quantum gates, we can manipulate these particles to create algorithms to solve computational problems. Quantum computing does not collapse the complexity hierarchy by providing an across the board exponential speedup but can provide such a speedup …


Thermal Blooming With Laser-Induced Convection: Radial Basis Function Simulation, Benjamin F. Akers, Steven T. Fiorino, Jonah A. Reeger Aug 2023

Thermal Blooming With Laser-Induced Convection: Radial Basis Function Simulation, Benjamin F. Akers, Steven T. Fiorino, Jonah A. Reeger

Faculty Publications

The propagation of a high energy laser through a nearly stagnant absorbing medium is studied. The absorption values and time scale of the problem are such that the laser induces convective heat currents transverse to the beam. These currents couple to the laser via the refractive index, causing time dependent thermal blooming. A numerical method is developed and applied to the model in [ J. Electromagn. Waves Appl. 33, 96 (2019) ], using radial basis functions for spatial differencing, which allows for irregular point spacings and a wide class of geometries. Both the beam and laser-induced fluid dynamics are …


Topological Hall Effect In Particulate Magnetic Nanostructure, Ahsan Ullah Aug 2023

Topological Hall Effect In Particulate Magnetic Nanostructure, Ahsan Ullah

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Conduction electrons change their spin direction due to the exchange interaction with the lattice spins. Ideally, the spins of the conduction electrons follow the atomic spin adiabatically, so that spins like S1, S2, and S3 can be interpreted as time-ordered sequences t1 < t2 < t3. Such spin sequences yield a quantum-mechanical phase factor in the wave function,  →ei, where  is known as the Berry phase. The corresponding spin rotation translates into a Berry curvature and an emergent magnetic field and subsequently, Hall-effect contribution known as the topological Hall-effect. This dissertation explores topological Hall-effect in particulate magnets, where noncollinear spins are stabilized by competition between different magnetic interactions. The topologically non-trivial spin textures in these nanostructures are flower states, curling states, vortex, and magnetic bubbles, which give rise to topological Hall-effect and have finite spin chirality and Skyrmion number Q. Topological Hall-effect is investigated in noninteracting nanoparticles, exchanges coupled centrosymmetric nanoparticles, exchanges coupled non-centrosymmetric nanoparticles which possess Dzyaloshinskii-Moriya interaction (DMI), and exchanged coupled Hard and soft magnetic films. Micromagnetic modeling, simulations, analytical calculations, and experimental methods are used to determine topological Hall-effect. In very small noninteracting nanoparticles, the reverse magnetic fields enhance Q due to the flower state until the reversal occurs, whereas, for particles with a radius greater than coherence radius, the Q jumps to a larger value at the nucleation field representing the curling state. The comparisons of magnetization patterns between experimental and computed magnetic force microscopy (MFM) measurements show the presence of spin chirality. Magnetic and Hall-effect measurements identify topological Hall-effect in the exchange-coupled Co and CoSi-nanoparticle films. The origin of the topological Hall-effect namely, the chiral domains with domain-wall chirality quantified by an integer skyrmion number in Co and chiral spins with partial skyrmion number in CoSi. These spin structures are different from the Skyrmions due to DMI in B-20 crystals and multilayered thin films with Cnv symmetry. In these films THE caused by cooperative magnetization reversal in the exchange-coupled Co-nanoparticles and peripheral chiral spin textures in CoSi-nanoparticles.

Advisor: Xiaoshan Xu


Aspects Of The Phenomenology Of Interference That Are Genuinely Nonclassical, Lorenzo Catani, Matthew Leifer, Giovanni Scala, David Schmid, Robert W. Spekkens Aug 2023

Aspects Of The Phenomenology Of Interference That Are Genuinely Nonclassical, Lorenzo Catani, Matthew Leifer, Giovanni Scala, David Schmid, Robert W. Spekkens

Mathematics, Physics, and Computer Science Faculty Articles and Research

Interference phenomena are often claimed to resist classical explanation. However, such claims are undermined by the fact that the specific aspects of the phenomenology upon which they are based can in fact be reproduced in a noncontextual ontological model [Catani et al., arXiv:2111.13727]. This raises the question of what other aspects of the phenomenology of interference do in fact resist classical explanation. We answer this question by demonstrating that the most basic quantum wave-particle duality relation, which expresses the precise tradeoff between path distinguishability and fringe visibility, cannot be reproduced in any noncontextual model. We do this by …


Direct Measurement Of The 114cd(N, Gamma)115cd Cross Section In The 1 Ev To 300 Kev Energy Range, Kofi Tutu Addo Assumin-Gyimah Aug 2023

Direct Measurement Of The 114cd(N, Gamma)115cd Cross Section In The 1 Ev To 300 Kev Energy Range, Kofi Tutu Addo Assumin-Gyimah

Theses and Dissertations

The large thermal cross section of cadmium makes it ideal for many practical applications where screening of thermal neutrons is desired. For example, in non-destructive assay techniques, or for astrophysical studies of the s-process. All such applications require precise knowledge of the neutron-capture cross section on cadmium. Although there are some data on neutron-capture cross sections particularly at thermal energies and at energies relevant for astrophysics, there is very little data at most other energies. Further, the evaluated cross sections from the ENDF and JENDL databases disagree at high energies. Therefore, there is a critical need for precise knowledge of …


Optimization Of A Ball's Launch In Sports, Andrew C. Smith, Javier E. Hasbun Aug 2023

Optimization Of A Ball's Launch In Sports, Andrew C. Smith, Javier E. Hasbun

Georgia Journal of Science

Newton's laws are used to study the effects of air resistance on an object's motion. In ball-related sports such as baseball, soccer, etc., understanding the effects of air resistance is essential to optimize ball launch performance. This performance optimization can be studied by identifying the minimal time it takes for a ball with speed to travel a certain distance. We work with two models that apply to an object's motion. One of the models assumes a linear air drag while a second model makes use of a quadratic air drag. We do investigate known differential equations for when the Magnus …


Search For Higgs Boson Decay To A Charm Quark-Antiquark Pair In Proton-Proton Collisions At √S =13 Tev, A. Tumasyan Aug 2023

Search For Higgs Boson Decay To A Charm Quark-Antiquark Pair In Proton-Proton Collisions At √S =13 Tev, A. Tumasyan

Department of Physics and Astronomy: Faculty Publications

A search for the standard model Higgs boson decaying to a charm quark-antiquark pair, H → c[], produced in association with a leptonically decaying V (W or Z) boson is presented. The search is performed with proton-proton collisions at √s = 13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb−1. Novel charm jet identification and analysis methods using machine learning techniques are employed. The analysis is validated by searching for Z → c[] in VZ events, leading to its first observation at a hadron collider with a significance …


Anomaly Detection In The Molecular Structure Of Gallium Arsenide Using Convolutional Neural Networks, Timothy Roche *, Aihua W. Wood, Philip Cho *, Chancellor Johnstone Aug 2023

Anomaly Detection In The Molecular Structure Of Gallium Arsenide Using Convolutional Neural Networks, Timothy Roche *, Aihua W. Wood, Philip Cho *, Chancellor Johnstone

Faculty Publications

This paper concerns the development of a machine learning tool to detect anomalies in the molecular structure of Gallium Arsenide. We employ a combination of a CNN and a PCA reconstruction to create the model, using real images taken with an electron microscope in training and testing. The methodology developed allows for the creation of a defect detection model, without any labeled images of defects being required for training. The model performed well on all tests under the established assumptions, allowing for reliable anomaly detection. To the best of our knowledge, such methods are not currently available in the open …


Representing Quantum Spins In Different Coordinate Systems For Modelling Rigid Body Orientation, Nadjet Zioui, Aicha Mahmoudi, Mohamed Tadjine Aug 2023

Representing Quantum Spins In Different Coordinate Systems For Modelling Rigid Body Orientation, Nadjet Zioui, Aicha Mahmoudi, Mohamed Tadjine

Karbala International Journal of Modern Science

Various methods for representing the spatial orientation and rotation of objects are presented and compared with the quantum bit state representation. By contrasting spherical, Euler angle, quaternion, and quantum spin coordinate systems, this work highlights important concepts regarding the rotation axis of the X gate. Several ambiguities and incomplete definitions associated with the qubit state representation are discussed, such as the spin around the qubit itself and the explanation of the considered rotation angles and signs. A mathematical analysis of the physical meaning of each eigenstate is provided along with a new comprehensive and meaningful YPR-based 3D representation of a …


Improving The Burt’S Sensitivity Using Noise Calibration Unit Via Crab Nebula Observations, Uday E. Jallod, Lana T. Ali, Hareth S. Mahdi, Kamal M. Abood Aug 2023

Improving The Burt’S Sensitivity Using Noise Calibration Unit Via Crab Nebula Observations, Uday E. Jallod, Lana T. Ali, Hareth S. Mahdi, Kamal M. Abood

Karbala International Journal of Modern Science

Radio observations from astronomical sources like supernovae became one the most important sources of information about the physical properties of those objects. However, such radio observations are affected by various types of noise such as those from sky, background, receiver, and the system itself. Therefore, it is essential to eliminate or reduce these undesired noise from the signals in order to ensure accurate measurements and analysis of radio observations. One of the most commonly used methods for reducing the noise is to use a noise calibrator. In this study, the 3-m Baghdad University Radio Telescope (BURT) has been used to …


Modifying The Composition Of A High Temperature Superconductor, Drue Lubanski Aug 2023

Modifying The Composition Of A High Temperature Superconductor, Drue Lubanski

Electronic Theses and Dissertations

The purpose of this research was to recreate a known superconductor, YBa2Cu3Ox, and modify it in an attempt to raise its transition temperature. A superconductor is any material that excludes magnetic flux from its interior when at a temperature below its transition temperature. A “high temperature” superconductor refers to material that shows superconductivity at or above the temperature of liquid nitrogen temperatures (77.15K).

Here we were successful in reproducing the original YBa2Cu3Ox and measuring its critical temperature; However, our efforts at raising the transition temperature have, as of yet, …


Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park Aug 2023

Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park

Doctoral Dissertations

Multiferroic materials attract significant attention due to their potential utility in a broad range of device applications. The inclusion of heavy metal centers in these materials enhances their magnetoelectric properties, yielding fascinating physical phenomena such as the Dzyaloshinskii–Moriya interaction, nonreciprocal directional dichroism, enhancement of spin-phonon coupling, and spin-orbit-entangled ground states. This dissertation provides a comprehensive survey of magnetoelectric multiferroics containing heavy metal centers and explores spectroscopic techniques under extreme conditions. A microscopic examination of phase transitions, symmetry-breaking, and structure-property relationships enhances the fundamental understanding of coupling mechanisms.

In A2Mo3O8 (A = Fe, Zn, Ni, and Mn), we use optical spectroscopy …


The Importance Of Contrast Sensitivity, Color Vision, And Electrophysiological Testing In Clinical And Occupational Settings, Frances Silva Aug 2023

The Importance Of Contrast Sensitivity, Color Vision, And Electrophysiological Testing In Clinical And Occupational Settings, Frances Silva

Theses & Dissertations

Visual acuity (VA) is universally accepted as the gold standard metric for ocular vision and function. Contrast sensitivity (CS), color vision, and electrophysiological testing for clinical and occupational settings are warranted despite being deemed ancillary and minimally utilized by clinicians. These assessments provide essential information to subjectively and objectively quantify and obtain optimal functional vision. They are useful for baseline data and monitoring hereditary and progressive ocular conditions and cognitive function. The studies in this dissertation highlight the value of contrast sensitivity, color vision, and cone specific electrophysiological testing, as well as the novel metrics obtained with potential practical clinical …


A Dft Analysis And Simple Hamiltonian Modeling Of A Molecular System Employed For Experimental Evidence Of Quantum Teleportation, Pedro Ulises Medina Gonzalez Aug 2023

A Dft Analysis And Simple Hamiltonian Modeling Of A Molecular System Employed For Experimental Evidence Of Quantum Teleportation, Pedro Ulises Medina Gonzalez

Open Access Theses & Dissertations

Radical ion pairs (RIPs) have been used to demonstrate quantum teleportation in molecular systems for applications in quantum information science. Covalent organic donor-acceptor (D-A) molecules can produce RIPs through photo-induced charge transfer and an additional radical (R) molecule makes quantum teleportation possible. We present the electronic structure and analyze charge transfer excited states of a recently studied [1] D-A-R molecular system using density functional theory. The distances between donor-acceptor and donor-radical are about 12.9 \AA $\,$ and 21.9 \AA, respectively. The excitation energies are calculated using the perturbative delta-SCF method and agree with other conventional excited-state methods and experimental reference …


Design Of A Resonant Optical Cavity For Imaging Magneto-Optically Active Thin Film Samples, Cody Robert Brelage Aug 2023

Design Of A Resonant Optical Cavity For Imaging Magneto-Optically Active Thin Film Samples, Cody Robert Brelage

Graduate Theses - Physics and Optical Engineering

This document describes the design and fabrication of an optical resonator system to investigate magneto-optic properties of thin film samples. This system uses an open-air optical resonator to enable photons to make multiple passes through each thin film and thus increase the magnitude of the Faraday rotation that each sample imposes onto the light that exits the system. This system promises many future experiments to study the magneto-optic properties of thin film and nano-particle samples. Using an optical resonator to enhance Faraday rotation should enable an improved signal-to-noise ratio in taking measurements and images with a photodetector.


Density Functional Theory Study Of Dopant Incorporation Into Gamma-Uo3, Nicholas James Wilson Aug 2023

Density Functional Theory Study Of Dopant Incorporation Into Gamma-Uo3, Nicholas James Wilson

Open Access Theses & Dissertations

Uranium trioxide (UO3) is a stable uranium oxide found throughout the nuclear fuel cycle. The γ-UO3 phase is of particular interest as the most stable at ambient conditions. As such, the γ-UO3 structure was selected for a theoretical investigation into the incorporation of metal dopants for nuclear intentional forensics applications. The two lattice types of this phase, tetragonal (I41/amd) and orthorhombic (Fddd), were investigated and found to be energetically identical, and as such the smaller tetragonal structure was selected for doping. Three transition metal dopants (Cr, Fe, and Ni) were incorporated into the structure interstitially and substitutionally at a total …


The Influence Of Allostery Governing The Changes In Protein Dynamics Upon Substitution, Joseph Hess Aug 2023

The Influence Of Allostery Governing The Changes In Protein Dynamics Upon Substitution, Joseph Hess

All Dissertations

The focus of this research is to investigate the effects of allostery on the function/activity of an enzyme, human immunodeficiency virus type 1 (HIV-1) protease, using well-defined statistical analyses of the dynamic changes of the protein and variants with unique single point substitutions 1. The experimental data1 evaluated here only characterized HIV-1 protease with one of its potential target substrates. Probing the dynamic interactions of the residues of an enzyme and its variants can offer insight of the developmental importance for allosteric signaling and their connection to a protein’s function. The realignment of the secondary structure elements can …