Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Doctoral Dissertations

Discipline
Institution
Keyword
Publication Year

Articles 211 - 240 of 1882

Full-Text Articles in Physical Sciences and Mathematics

Data-Driven Modeling And Simulations Of Seismic Waves, Yixuan Wu Jan 2022

Data-Driven Modeling And Simulations Of Seismic Waves, Yixuan Wu

Doctoral Dissertations

"In recent decades, nonlocal models have been proved to be very effective in the study of complex processes and multiscale phenomena arising in many fields, such as quantum mechanics, geophysics, and cardiac electrophysiology. The fractional Laplacian(−Δ)𝛼/2 can be reviewed as nonlocal generalization of the classical Laplacian which has been widely used for the description of memory and hereditary properties of various material and process. However, the nonlocality property of fractional Laplacian introduces challenges in mathematical analysis and computation. Compared to the classical Laplacian, existing numerical methods for the fractional Laplacian still remain limited. The objectives of this research are …


Secure And Efficient Information Management In Delay(Disruption) Tolerant Network, Shudip Datta Jan 2022

Secure And Efficient Information Management In Delay(Disruption) Tolerant Network, Shudip Datta

Doctoral Dissertations

"In environments like international military coalitions on the battlefield or multi-party relief work in a disaster zone, multiple teams are deployed to serve different mission goals by the command-and-control center (CC). They may need to survey damages and send information to the CC for situational awareness and also transfer messages to each other for mission purposes. However, due to the damaged network infrastructure in the emergency, nodes need to relay messages using the store and forward paradigm, also called Delay-tolerant Networks (DTNs). In DTN, the limited bandwidth, energy, and contacts among the nodes, and their interdependency impose several challenges such …


Design And Synthesis Of Purine Based Neuroprotectors And Novel Synthetic Methods For The Trifluoromethylation Of Aldehyde Hydrazones, Puspa Aryal Jan 2022

Design And Synthesis Of Purine Based Neuroprotectors And Novel Synthetic Methods For The Trifluoromethylation Of Aldehyde Hydrazones, Puspa Aryal

Doctoral Dissertations

"Purine-derived compounds are widely investigated as cyclin-dependent kinase inhibitors that have broad applications in the design of pharmaceuticals for treating diseases, such as diabetes, atherosclerosis, and cancers. Towards the goal of effective AGE-inhibitors, and neuroprotector compounds we have synthesized a series of novel purine-based triazoles and investigated their neuroprotective effects, using SHSY-3Y human neuroblastoma cell line. Through these studies, we have identified purine-based neuroprotector compounds that favorably modulate oxidative stress induced by the Fenton reaction-generated reactive oxygen species (ROS).

The C(sp2−H)-trifluoromethylation of hydrazones would give access to the αtrifluoromethylated hydrazones that can serve as intermediates in the synthesis …


Mantle Flow And Transition Zone Discontinuities Beneath The Carribean Plate: Constraints From Shear Wave Splitting And Receiver Function Analyses, Tu Xue Jan 2022

Mantle Flow And Transition Zone Discontinuities Beneath The Carribean Plate: Constraints From Shear Wave Splitting And Receiver Function Analyses, Tu Xue

Doctoral Dissertations

"Azimuthal anisotropy quantified by teleseismic SKS, SKKS, PKS (“XKS”) and local S wave splitting parameters is used to investigate lithospheric deformation and asthenospheric flow beneath the boundary zone of the North American and Caribbean plates and adjacent areas. A total of 4915 XKS and 1202 pairs of local S wave splitting parameters were obtained at 24 broad band seismic stations. The XKS observations can be divided into two groups based on the spatial distribution of the resulting fast polarization orientations. Those observed on the Caribbean Plate are mostly WNW-ESE which are roughly trench-parallel. In contrast, the fast orientations observed on …


Application Of Machine Learning In Geophysics: Ranking Teleseismic Shear Wave Splitting Measurements And Classifying Different Types Of Earthquakes, Yanwei Zhang Jan 2022

Application Of Machine Learning In Geophysics: Ranking Teleseismic Shear Wave Splitting Measurements And Classifying Different Types Of Earthquakes, Yanwei Zhang

Doctoral Dissertations

"During the past decades, applications of Machine Learning have been explosively developed to solve various academic and industrial problems, and over-human performance has been shown in diverse areas. In geophysical research, Machine Learning, especially Convolutional Neural Network (CNN), has been applied in numerous studies and demonstrated considerable potential. In this study, we applied CNN to solve two geophysical problems, ranking teleseismic shear splitting (SWS) measurements and classifying different types of earthquakes.

For ranking teleseismic SWS measurements, we utilized a CNN-based method to automatically select reliable SWS measurements. The CNN was trained by human-verified teleseismic SWS measurements and tested using synthetic …


Electrocatalytic Processes For Energy Storage & Conversion, Apurv Saxena Jan 2022

Electrocatalytic Processes For Energy Storage & Conversion, Apurv Saxena

Doctoral Dissertations

"The continuous excessive usage of fossil fuels has resulted in its fast depletion leading to an escalating energy crisis as well as several environmental issues leading to increased research towards sustainable energy conversion. Electrocatalysts play crucial role in the development of numerous novel energy conversion devices including fuel cells and solar fuel generators.

High-efficiency and cost-effective catalysts are required for large-scale implementation of these new devices. Over the last few years transition metal chalcogenides have emerged as highly efficient electrocatalysts for several electrochemical devices such as water splitting, carbon dioxide electroreduction and, solar energy converters. These transition metal chalcogenides exhibit …


Laterally Heterogeneous Seismic Anisotropy Investigated By Shear Wave Splitting Analyses, Yan Jia Jan 2022

Laterally Heterogeneous Seismic Anisotropy Investigated By Shear Wave Splitting Analyses, Yan Jia

Doctoral Dissertations

"Numerous geophysical studies suggest that seismic anisotropy is a nearly ubiquitous property of the Earth’s crust and upper mantle. In this study, we utilize the shear wave splitting technique to investigate the piercing-point-dependent azimuthal anisotropy beneath the northeastern edge of the Sichuan Basin in central China, and the spatial and temporal variations of anisotropy near the 2019 M7.1 Ridgecrest earthquake in California, respectively. A clear back azimuthal dependence of the splitting parameters and the lack of a 90° or 180° periodicity of azimuthal variation in the observed fast orientations provide strong evidence for the existence of piercing-point-dependent anisotropy beneath the …


Disorder Effects In Frustrated Magnets And Absorbing State Transitions, Xuecheng Ye Jan 2022

Disorder Effects In Frustrated Magnets And Absorbing State Transitions, Xuecheng Ye

Doctoral Dissertations

"Correlation, topology, and disorder can fundamentally affect the properties of interacting many-particle systems. After a short introduction which covers the basic concepts of phase transitions and scaling as well as the physics of Josephson junctions, the dissertation focuses on three separate projects.

The first project is motivated by the stripe and nematic phases observed e.g. in cuprate superconductors and iron pnictides. To understand the effects of disorder on such phases, we have investigated the behavior of the diluted J1-J2 Ising model. Spinless impurities generate a random-field disorder for the spin-density (stripe) order parameter, which destroys the stripe …


Deep Learning-Based Surrogate Models For Post-Earthquake Damage Assessment, Xinzhe Yuan Jan 2022

Deep Learning-Based Surrogate Models For Post-Earthquake Damage Assessment, Xinzhe Yuan

Doctoral Dissertations

"Seismic damage assessment is a critical step to enhance community resilience in the wake of an earthquake. This study aims to develop deep learning-based surrogate models for widely used fragility curves to achieve more accurate and rapid assessment in practice. These surrogate models are based on artificial neural networks trained from the labelled ground motions whose resulting damage classes on targeted structures are determined by nonlinear time history analyses. The development of various surrogate models is progressed in four phases. In Phase I, the multilayer perceptron (MLP) is used to develop multivariate seismic classifiers with up to 50 hand-crafted intensity …


Representation Learning On Heterogeneous Spatiotemporal Networks, Dakshak Keerthi Chandra Jan 2022

Representation Learning On Heterogeneous Spatiotemporal Networks, Dakshak Keerthi Chandra

Doctoral Dissertations

“The problem of learning latent representations of heterogeneous networks with spatial and temporal attributes has been gaining traction in recent years, given its myriad of real-world applications. Most systems with applications in the field of transportation, urban economics, medical information, online e-commerce, etc., handle big data that can be structured into Spatiotemporal Heterogeneous Networks (SHNs), thereby making efficient analysis of these networks extremely vital. In recent years, representation learning models have proven to be quite efficient in capturing effective lower-dimensional representations of data. But, capturing efficient representations of SHNs continues to pose a challenge for the following reasons: (i) Spatiotemporal …


Variational Data Assimilation For Two Interface Problems, Xuejian Li Jan 2022

Variational Data Assimilation For Two Interface Problems, Xuejian Li

Doctoral Dissertations

“Variational data assimilation (VDA) is a process that uses optimization techniques to determine an initial condition of a dynamical system such that its evolution best fits the observed data. In this dissertation, we develop and analyze the variational data assimilation method with finite element discretization for two interface problems, including the Parabolic Interface equation and the Stokes-Darcy equation with the Beavers-Joseph interface condition. By using Tikhonov regularization and formulating the VDA into an optimization problem, we establish the existence, uniqueness and stability of the optimal solution for each concerned case. Based on weak formulations of the Parabolic Interface equation and …


Effects Of Vacancies And Electron Temperature On The Electron Phonon Coupling In Cubic Silicon Carbide And Their Connection To The Inelastic Thermal Spike, Salah Al-Smairat Jan 2022

Effects Of Vacancies And Electron Temperature On The Electron Phonon Coupling In Cubic Silicon Carbide And Their Connection To The Inelastic Thermal Spike, Salah Al-Smairat

Doctoral Dissertations

“The electron-phonon interaction is an important interaction in many solids as it influences transport phenomena and related quantities such as the electrical and thermal conductivities, especially in nuclear and space applications. The importance of the electron-phonon interaction in primary damage production in 3C-SiC is the subject of this research.

The electron-phonon coupling factor was calculated using a hybrid Density Functional Perturbation Theory - Classical Electron Gas model. The coupling factor was calculated as a function of electron temperature in pristine and defective 3C-SiC, and relaxed defective cells. The electron-phonon coupling is found to depend strongly on the electronic temperature and …


The Kanarra Fold-Thrust System -- The Leading Edge Of The Sevier Fold-Thrust Belt, Southwest Utah, William Joseph Michael Chandonia Jan 2022

The Kanarra Fold-Thrust System -- The Leading Edge Of The Sevier Fold-Thrust Belt, Southwest Utah, William Joseph Michael Chandonia

Doctoral Dissertations

“The Jurassic to Eocene Sevier fold-thrust belt is the subject of continued scientific curiosity in tectonics, stratigraphy, and industry. Understanding its development in southwest Utah is hindered in part due to the multiple origins proposed for the Kanarra anticline, a major leading edge structure -- a drag fold along the Hurricane fault, Laramide monocline, Sevier fault propagation fold, or a combination of these -- which have confused its tectonic significance and regional context. This confusion results from the structural complexity of its exposed eastern limb, as well as displacement and burial of its crest and western limb beneath Neogene sediments …


Advances And Applications In High-Dimensional Heuristic Optimization, Samuel Alexander Vanfossan Jan 2022

Advances And Applications In High-Dimensional Heuristic Optimization, Samuel Alexander Vanfossan

Doctoral Dissertations

“Applicable to most real-world decision scenarios, multiobjective optimization is an area of multicriteria decision-making that seeks to simultaneously optimize two or more conflicting objectives. In contrast to single-objective scenarios, nontrivial multiobjective optimization problems are characterized by a set of Pareto optimal solutions wherein no solution unanimously optimizes all objectives. Evolutionary algorithms have emerged as a standard approach to determine a set of these Pareto optimal solutions, from which a decision-maker can select a vetted alternative. While easy to implement and having demonstrated great efficacy, these evolutionary approaches have been criticized for their runtime complexity when dealing with many alternatives or …


Synthesis, Characterization And Chemistry Of Two-Dimensional Transition Metal Carbides And Nitrides (Mxenes), Shuohan Huang Jan 2022

Synthesis, Characterization And Chemistry Of Two-Dimensional Transition Metal Carbides And Nitrides (Mxenes), Shuohan Huang

Doctoral Dissertations

"MXenes represent a relatively new and quickly growing family of two-dimensional (2D) early transition-metal carbides and nitrides first synthesized in 2011 from bulk layered crystalline MAX phases. Because of their 2D structure and unique combination of high conductivity and hydrophilicity, MXenes have raised a significant interest for various applications. However, it has been found that in some cases colloidal MXene flakes are not stable and can spontaneously degrade on a time scale from hours to days. In this work, we investigate the crucial factors for MXene degradation and demonstrate gas analysis as a powerful method to gain further insights into …


Synthesis And Process Optimization Of Colloidal Unimolecular Polymer, Cup, Particle Formation, And Its Interfacial Surface Tension Behavior, Ashish Zore Jan 2022

Synthesis And Process Optimization Of Colloidal Unimolecular Polymer, Cup, Particle Formation, And Its Interfacial Surface Tension Behavior, Ashish Zore

Doctoral Dissertations

"Colloidal Unimolecular Polymer (CUP) particles are 3-9 nm size single-chain polymer nanoparticles that are made from amphiphilic acrylic co-polymers using the process of water reduction. The formation of CUP particles was driven by the polymer-polymer interactions being greater than polymer-solvent interactions as well as the charge-charge repulsion due to the increasing dielectric of the medium. CUPs provide a surfactant or additive-free nanoparticle system that was useful for studying the interfacial behavior of pure aqueous nanoparticles using a maximum bubble pressure tensiometer. The equilibrium surface tension shows a dependence on concentration and the charge density of the CUP particle. The equilibrium …


Persistent Stealthy Attacks And Their Detection In Large Distributed Cyber-Physical Systems, Simon Bech Thougaard Jan 2022

Persistent Stealthy Attacks And Their Detection In Large Distributed Cyber-Physical Systems, Simon Bech Thougaard

Doctoral Dissertations

"Cyber-Physical Systems (CPS) are increasingly targeted by attackers using a wide and evolving array of methods. When these systems are distributed, every node represents a potential vulnerability, and secure system design must take this into account. Distributed CPSs also have the potential to better detect and handle attacks, by leveraging redundancies of physical measurements between adjacent nodes. The main purpose of this research is to determine the conditions that render a distributed CPS more resistant to attacks, and the conditions that render it more vulnerable. The work is centered around two separate applications: The Smart Grid and Autonomous Drone Swarms. …


Depositional Conditions, Stratigraphic Evolution, And Allo- And Autogenic Controls Of Lower Permian Non-Marine Carbonate Rocks, Lucaogou Low-Order Cycle, Bogda Mountains, Nw China, Yiran Lu Jan 2022

Depositional Conditions, Stratigraphic Evolution, And Allo- And Autogenic Controls Of Lower Permian Non-Marine Carbonate Rocks, Lucaogou Low-Order Cycle, Bogda Mountains, Nw China, Yiran Lu

Doctoral Dissertations

"The overall objective of this study is to interpret the depositional conditions of lacustrine carbonate deposits of the lower Permian Lucaogou low-order cycle in the greater Turpan-Junggar continental rift basin, NW China. The depositional environments of ten carbonate lithofacies in the Tarlong-Taodonggou half graben and the Zhaobishan section were interpreted. Allo- and autogenic factors were identified. They controlled characteristics and distribution pattern of carbonate deposits in regional and local scale, respectively. Allogenic factors include the amount and direction of regional siliciclastic input, basin geometry, cyclic humidity/aridity oscillation, temperature, and regional tectonics. Autogenic factors include local siliciclastic input, local topography, local …


Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers Dec 2021

Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers

Doctoral Dissertations

The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear pulse plasma device at Oak Ridge National Laboratory with the purpose of doing the research and development for the heating concepts on the planned full MPEX device. The goal of MPEX is to perform material studies at fusion relevant conditions. To understand the conditions at the material target for performing plasma-material interaction studies the ion temperature and density, the electron temperature and density, and the particle flux and fluence must be known. Impurities within Proto-MPEX can alter the desired conditions at the material target and need to be understood for …


Electroweak Interactions And Fundamental Symmetries In Light Nuclei With Short-Range Effective Field Theories, Zichao Yang Dec 2021

Electroweak Interactions And Fundamental Symmetries In Light Nuclei With Short-Range Effective Field Theories, Zichao Yang

Doctoral Dissertations

Effective field theories(EFTs) are powerful tools to study nuclear systems that display separation of scales. In this dissertation, we present halo EFT results for the $\beta$-delayed proton emission from $^{11}$Be, and pionless EFT results for three-nucleon systems. Halo nuclei are simply described by a tightly bound core and loosely bound valence nucleons. Using the halo EFT, we calculate the rate of the rare decay $^{11}$Be, which is a well-known halo nucleus, into $^{10}\text{Be} + p +e^- + \bar{\nu}_e$. We assume a shallow $1/2 ^+$ resonance in the $^{10}$Be$-p$ system with an energy consistent with a recent experiment by Ayyad {\it …


Auto-Curation Of Large Evolving Image Datasets, Sara Mousavicheshmehkaboodi Dec 2021

Auto-Curation Of Large Evolving Image Datasets, Sara Mousavicheshmehkaboodi

Doctoral Dissertations

Large image collections are becoming common in many fields and offer tantalizing opportunities to transform how research, work, and education are conducted if the information and associated insights could be extracted from them. However, major obstacles to this vision exist. First, image datasets with associated metadata contain errors and need to be cleaned and organized to be easily explored and utilized. Second, such collections typically lack the necessary context or may have missing attributes that need to be recovered. Third, such datasets are domain-specific and require human expert involvement to make the right interpretation of the image content. Fourth, the …


Total Internal Reflection: Applications In Nonlinear Microscopy And Fluorescence Anisotropy, Brandon Colon Dec 2021

Total Internal Reflection: Applications In Nonlinear Microscopy And Fluorescence Anisotropy, Brandon Colon

Doctoral Dissertations

As technology advances to harness new energies and to create new cures, the sophistication of analysis grows not only in depth but in efficiency. Total internal reflection (TIR) has been coupled to microscopy leveraging its unique optical phenomenon on a breadth of topics. In this dissertation, the work presented will show how TIR was applied in two different instrumental analyses to evaluate two unique and complex systems. The first project features TIR paired with the transient absorption microscopy (TAM), a nonlinear optical technique, to gauge solvent mixing and diffusion in microreactors. Microreactors gained acclaim for their ability to produce high …


Instrument Development For High Sensitivity Size Characterization Of Lipid Vesicles And Other Biological Macromolecules Via Taylor Dispersion Analysis, Meagan Moser Dec 2021

Instrument Development For High Sensitivity Size Characterization Of Lipid Vesicles And Other Biological Macromolecules Via Taylor Dispersion Analysis, Meagan Moser

Doctoral Dissertations

Just as humans communicate with other humans, the cells in our bodies communicate with each other through various, often complex, mechanisms. Cell-to-cell transmission of small molecules, lipids, proteins, peptides, or nucleic acids can be mediated by extracellular lipid vesicles called exosomes. Exosomes have been found to play a role in the delivery of regulatory molecules from one cell to another, serving as a universal communication mechanism. Currently, there is an emerging focus on characterizing exosome communication dynamics. Understanding exosome mechanisms of cell-to-cell communication requires accurate measurements of the spatiotemporal and chemical dynamics of exosome secretion. No current analytical approach offers …


Search For New Physics In Rare Higgs Boson Decays With The Cms Detector At The Large Hadron Collider, Himal Acharya Dec 2021

Search For New Physics In Rare Higgs Boson Decays With The Cms Detector At The Large Hadron Collider, Himal Acharya

Doctoral Dissertations

A new boson with a mass of 125 GeV was discovered at the large hadron collider (LHC) in July 2012. The properties of this particle are so far consistent with the standard model (SM) expectation. Differences in the Higgs boson decay rates and predicted by the SM might indicate the presence of new particles and forces between them. Particularly, rare exclusive decays of the Higgs boson are a promising laboratory to study physics beyond the standard model. Searches for decays of the Higgs boson into a Z boson and a J/ψ meson or into pairs of J/ψ or Υ mesons …


Application Of Single-Ion Conducting Polymer Electrolytes (Sicpes), Sheng Zhao Dec 2021

Application Of Single-Ion Conducting Polymer Electrolytes (Sicpes), Sheng Zhao

Doctoral Dissertations

Polymer electrolytes have been widely studied as a potential candidate for next generation batterie with improved safety and higher energy density. Especially, single-ion conducting polymer electrolytes (SICPEs) have attracted significant attention due to their almost unity lithium-ion transport number, which is believed to help suppress lithium dendrite growth and extend battery cycle life. However, there is still a long way to go before they can be practically applied in batteries, due to their relatively low ionic conductivity at ambient temperature. Therefore, the main goal of this work is to explore various methods that can improve the ionic conductivity of SICPEs …


A Connectivity Framework To Explore The Role Of Anthropogenic Activity And Climate On The Propagation Of Water And Sediment At The Catchment Scale, Christos Giannopoulos Dec 2021

A Connectivity Framework To Explore The Role Of Anthropogenic Activity And Climate On The Propagation Of Water And Sediment At The Catchment Scale, Christos Giannopoulos

Doctoral Dissertations

Anthropogenic disturbance in intensively managed landscapes (IMLs) has dramatically altered critical zone processes, resulting in fundamental changes in material fluxes. Mitigating the negative effects of anthropogenic disturbance and making informed decisions for optimal placement and assessment of best management practices (BMPs) requires fundamental understanding of how different practices affect the connectivity or lack thereof of governing transport processes and resulting material fluxes across different landscape compartments within the hillslope-channel continuum of IMLs. However, there are no models operating at the event timescale that can accurately predict material flux transport from the hillslope to the catchment scale capturing the spatial and …


Production Of Protactinium-229 Via Deuteron Irradiation Of Thorium-232, Naser Burahmah Dec 2021

Production Of Protactinium-229 Via Deuteron Irradiation Of Thorium-232, Naser Burahmah

Doctoral Dissertations

225Ac [Actinium-225] is a promising radionuclide for targeted alpha therapy of cancer. 229Pa can lead to the production of 229Th [Thorium-229] and 225Ac [Actinium-225]. Deuteron bombardment on natural thorium targets has been investigated to measure cross sections of protactinium isotopes. In this work, 229Pa [Protactinium-229] excitation function was measured via deuteron energies up to 50 MeV [Mega electron volt] of thin thorium foils. The irradiation took place at Lawrence Berkeley National Laboratory’s (LBNL) 88-Inch Cyclotron. The target processing and analysis were performed at Oak Ridge National Laboratory (ORNL). The target consisted of 4 thin foils …


Production And Adsorption Of Volatile Tellurium Hexafluoride, Stephanie H. Bruffey Dec 2021

Production And Adsorption Of Volatile Tellurium Hexafluoride, Stephanie H. Bruffey

Doctoral Dissertations

Research and development supporting the management of off-gases from nuclear fuel reprocessing has historically been focused on the off-gas streams that arise from aqueous reprocessing technology. With the advent of advanced reactor designs off-gas streams arising from advanced reprocessing methodology, such as that of FV [fluoride volatility] processing, also merit consideration. This work focuses on TeF6 [tellurium hexafluoride], one of the most volatile radioactive compounds produced during FV, and investigates TeF6 production, measurement, and abatement technologies.

To assist in on-line monitoring of TeF6 by Fourier-transformed infrared spectroscopy, this work systematically used the ideal gas law and Beer’s …


Analytical Considerations And Methods For Comprehensive Analysis Of Bacterial Phospholipidomics Using Hilic-Ms/Ms, David Thomas Reeves Dec 2021

Analytical Considerations And Methods For Comprehensive Analysis Of Bacterial Phospholipidomics Using Hilic-Ms/Ms, David Thomas Reeves

Doctoral Dissertations

Omics technologies have rapidly evolved over the last half century through vast improvements in efficient extraction methodologies, advances in instrumentation for data collection, and a wide assortment of informatics tools to help deconvolute sample data sets. However, there are still untapped pools of molecules that warrant further analytical attention. As the frontline defense of the cell against exterior influences, the phospholipid membrane is key in structure, defense, and signaling, but current omics studies are only just now catching up to the potential hidden within cellular lipid profiles. Examination of shifts in phospholipid speciation and character could provide researchers with a …


Exploring The Potential Of Ionothermal Syntheses For High-Performance Lithium-Ion Battery Anode Materials, Runming Tao Dec 2021

Exploring The Potential Of Ionothermal Syntheses For High-Performance Lithium-Ion Battery Anode Materials, Runming Tao

Doctoral Dissertations

Renewable energy storage systems are regarded as the solution to the environmental and energy crises caused by the burning of fossil fuels in vehicles. Unfortunately, owning to the limits to the electrochemical performance of the current anode materials, lithium-ion batteries [LIBs] are still lacking strength in the charging rate-capability and thereby cannot fulfill future application requirements in electrical vehicles [EVs].

Particularly, graphite with a high theoretical specific capacity of 372 mAh/g is unsuitable for EVs due to the safety concerns of passivating solid-electrolyte interphase [SEI] resulted from the low operation potential of 0.1 V versus Li/Li+. The other …