Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Doctoral Dissertations

Discipline
Institution
Keyword
Publication Year

Articles 631 - 660 of 1882

Full-Text Articles in Physical Sciences and Mathematics

Conditional Computation In Deep And Recurrent Neural Networks, Andrew Scott Davis Aug 2016

Conditional Computation In Deep And Recurrent Neural Networks, Andrew Scott Davis

Doctoral Dissertations

Recently, deep learning models such as convolutional and recurrent neural networks have displaced state-of-the-art techniques in a variety of application domains. While the computationally heavy process of training is usually conducted on powerful graphics processing units (GPUs) distributed in large computing clusters, the resulting models can still be somewhat heavy, making deployment in resource- constrained environments potentially problematic. In this work, we build upon the idea of conditional computation, where the model is given the capability to learn how to avoid computing parts of the graph. This allows for models where the number of parameters (and in a sense, the …


Hybrid Micellar Network Hydrogels Of Thermosensitive Hydrophilic Triblock Copolymers And Thermosensitive Hairy Nanoparticles, Bin Hu Aug 2016

Hybrid Micellar Network Hydrogels Of Thermosensitive Hydrophilic Triblock Copolymers And Thermosensitive Hairy Nanoparticles, Bin Hu

Doctoral Dissertations

Hybrid micellar network hydrogels, composed of thermosensitive hydrophilic triblock copolymers and thermosensitive polymer brush-grafted nanoparticles (hairy NPs), exhibit intriguing rheological properties. This dissertation work studies thermosensitive hybrid hydrogels with NPs positioned either inside or outside the core of block copolymer micelles.

Chapter 1 is an introduction. Chapter 2 examines the effect of NP’s location on properties of hybrid hydrogels of a thermosensitive ABA triblock copolymer and hairy NPs. Two batches of thermoresponsive polymer brush-grafted silica NPs and an ABA triblock copolymer with thermosensitive outer blocks were prepared. When the lower critical solution temperature (LCST) of hairy NPs was similar to …


Synthesis And Application Of Polymer Brush-Grafted Nanoparticles As Hydrogel Gelators And Lubricant Additives, Roger Anthony Emory Wright Aug 2016

Synthesis And Application Of Polymer Brush-Grafted Nanoparticles As Hydrogel Gelators And Lubricant Additives, Roger Anthony Emory Wright

Doctoral Dissertations

This dissertation describes the synthesis of polymer brush-grafted nanoparticles (hairy NPs) and an analysis of their behavior or utility in multiple areas. The hairy NPs were synthesized from silica NPs functionalized with initiating moieties by surface-initiated atom transfer radical polymerization. A brief introduction to hairy NPs, with a focus on the synthesis and behavior of stimuli-responsive polymer brush-grafted particles, is given in Chapter 1 to provide context for this work.

Chapters 2 and 3 present the synthesis of thermosensitive diblock copolymer brush-grafted nanoparticles designed as hairy NP analogues in place of thermosensitive block copolymers micelles for the construction of hybrid, …


Spectroscopic Imaging Of Aluminum Containing Plasma, David Michael Surmick Aug 2016

Spectroscopic Imaging Of Aluminum Containing Plasma, David Michael Surmick

Doctoral Dissertations

This dissertation aims to characterize laser-induced plasma from a physics point of view as warm, dense matter. Use of nominal nanosecond pulsed laser radiation initiates a plasma with electron temperatures of the order of 10 electron volts and electron densities of the order of air species densities at standard ambient temperature and pressure. For laser ablation and/or optical breakdown at or near a solid surface, the electron density can amount to be 1000 times greater. Spectroscopic investigations of the plasma emissions provide a method by which the electron density, temperature, and shockwave expansion may be determined. Of particular interest are …


Actinium-225 Production Via Proton Irradiation Of Thorium-232, Justin Reed Griswold Aug 2016

Actinium-225 Production Via Proton Irradiation Of Thorium-232, Justin Reed Griswold

Doctoral Dissertations

High energy proton spallation reactions on natural thorium metal targets have been utilized to produce multi mCi [milliCurie] quantities of Actinium-225. Theoretical cross sections for actinium and thorium isotopes as well as for a select number of the fission products produced in these reactions were generated by the Monte Carlo radiation transport code PHITS to simulate the experimental data obtained from sixteen irradiations of thorium metal targets with 25-210 µA [microampere] proton beams ranging in energies from 77 to 192 MeV. Irradiations were conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing …


Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt Aug 2016

Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt

Doctoral Dissertations

In today’s world, the demand for novel methods of energy storage is increasing rapidly, particularly with the rise of portable electronic devices, electric vehicles, and the personal consumption and storage of solar energy. While other technologies have arguably improved at a rate that is exponential in accordance with Moore’s law, battery technology has lagged behind largely due to the difficulty in devising new electric storage systems that are simultaneously high performing, inexpensive, and safe.

In order to tackle these challenges, novel Li-ion battery anodes have been developed at Oak Ridge National Laboratory that are made from lignin, a low-cost, renewable …


Quantitative Metrics For Comparison Of Hyper-Dimensional Lsa Spaces For Semantic Differences, John Christopher Martin Aug 2016

Quantitative Metrics For Comparison Of Hyper-Dimensional Lsa Spaces For Semantic Differences, John Christopher Martin

Doctoral Dissertations

Latent Semantic Analysis (LSA) is a mathematically based machine learning technology that has demonstrated success in numerous applications in text analytics and natural language processing. The construction of a large hyper-dimensional space, a LSA space, is central to the functioning of this technique, serving to define the relationships between the information items being processed. This hyper-dimensional space serves as a semantic mapping system that represents learned meaning derived from the input content. The meaning represented in an LSA space, and therefore the mappings that are generated and the quality of the results obtained from using the space, is completely dependent …


Metabolomics Approaches To Decipher The Antibacterial Mechanisms Of Yerba Mate (Ilex Paraguariensis) Against Staphylococcus Aureus And Salmonella Enterica Serovar Typhimurium, Caroline Sue Rempe Aug 2016

Metabolomics Approaches To Decipher The Antibacterial Mechanisms Of Yerba Mate (Ilex Paraguariensis) Against Staphylococcus Aureus And Salmonella Enterica Serovar Typhimurium, Caroline Sue Rempe

Doctoral Dissertations

The increasing prevalence of drug-resistant pathogens is an urgent problem that requires novel methods of bacterial control. Plant extracts inhibit bacterial pathogens and could contain antibacterial compounds with novel mechanisms of action. Yerba mate, a common South American beverage made from Ilex paraguariensis, has antibiotic activity against a broad range of bacterial pathogens. In this work, an attempt was first made to characterize the antibacterial source of an aqueous yerba mate extract by generating a series of extract fractions, collecting GC-MS and antibacterial activity profiles, and then ranking the hundreds of compounds by their presence in fractions with high antibacterial …


Surface Plasmon Modes In Toroidal Nanostructures And Applications, Marouane Salhi Aug 2016

Surface Plasmon Modes In Toroidal Nanostructures And Applications, Marouane Salhi

Doctoral Dissertations

A special interest in Plasmon mode resonance in toroidal nano-particles where a full and comprehensive analytical investigation is presented for different toroidal nano-structure within the quasi-static approximation. Then the optical response of gold nanorings and the associated near-field mapping when exposed to a broadband electromagnetic wave were obtained by the implementation of numerical methods to solve for the transient response. The numerical and analytical investigation lead to the design of an optical nano-trapping system and the identification of strong coupling interaction between toroidal plasmons and J-aggregate dye molecules a promising component in the design of novel optoelectronic material.


Extension Theorems On Matrix Weighted Sobolev Spaces, Christopher Ryan Loga Aug 2016

Extension Theorems On Matrix Weighted Sobolev Spaces, Christopher Ryan Loga

Doctoral Dissertations

Let D a subset of Rn [R n] be a domain with Lipschitz boundary and 1 ≤ p < ∞ [1 less than or equal to p less than infinity]. Suppose for each x in Rn that W(x) is an m x m [m by m] positive definite matrix which satisfies the matrix Ap [A p] condition. For k = 0, 1, 2, 3;... define the matrix weighted, vector valued, Sobolev space [L p k of D,W] with

[the weighted L p k norm of vector valued f over D to the p power equals the sum over all alpha with order less than k of the integral over D of the the pth power …


Interaction Between Charge-Transfer States Studied By Magnetic Field Effects, Mingxing Li Aug 2016

Interaction Between Charge-Transfer States Studied By Magnetic Field Effects, Mingxing Li

Doctoral Dissertations

Organic semiconducting materials, consisting mostly of carbon and hydrogen atoms, provide remarkable promise for electronic applications due to their easy processing, chemical tenability, low costs and environmental-friendly characteristics. For realizing electronic applications such as light emitting diodes and photovoltaic cells, charge-transfer states act as an important intermediate state for recombination and dissociation. Interestingly, magnetic field effects on semiconducting materials have been realized based on the suppression of spin mixing in the charge-transfer states. Although lots of studies have been carried out on investigating the properties of charge-transfer states, little has been done to consider the interaction between them. This thesis …


Anthrax Models Involving Immunology, Epidemiology And Controls, Buddhi Raj Pantha Aug 2016

Anthrax Models Involving Immunology, Epidemiology And Controls, Buddhi Raj Pantha

Doctoral Dissertations

This dissertation is divided in two parts. Chapters 2 and 3 consider the use of optimal control theory in an anthrax epidemiological model. Models consisting system of ordinary differential equations (ODEs) and partial differential differential equations (PDEs) are considered to describe the dynamics of infection spread. Two controls, vaccination and disposal of infected carcasses, are considered and their optimal management strategies are investigated. Chapter 4 consists modeling early host pathogen interaction in an inhalational anthrax infection which consists a system of ODEs that describes early dynamics of bacteria-phagocytic cell interaction associated to an inhalational anthrax infection.

First we consider a …


Mathematical Approaches To Sustainability Assessment And Protocol Development For The Bioenergy Sustainability Target Assessment Resource (Bio-Star), Nathan Louis Pollesch Aug 2016

Mathematical Approaches To Sustainability Assessment And Protocol Development For The Bioenergy Sustainability Target Assessment Resource (Bio-Star), Nathan Louis Pollesch

Doctoral Dissertations

Bioenergy is renewable energy made of materials derived from biological, non-fossil sources. In addition to the benefits of utilizing an energy source that is renewable, bioenergy is being researched for its potential positive impact on climate change mitigation, job creation, and regional energy security. It has also been studied to investigate possible challenges related to indirect and direct land-use change and food security. Bioenergy sustainability assessment provides a method to identify, quantify, and interpret indicators, or metrics, of bioenergy sustainability in order to study trade-offs between environmental, social, and economic aspects of bioenergy production and use. Assessment is crucial to …


Advanced Sequential Monte Carlo Methods And Their Applications To Sparse Sensor Network For Detection And Estimation, Kai Kang Aug 2016

Advanced Sequential Monte Carlo Methods And Their Applications To Sparse Sensor Network For Detection And Estimation, Kai Kang

Doctoral Dissertations

The general state space models present a flexible framework for modeling dynamic systems and therefore have vast applications in many disciplines such as engineering, economics, biology, etc. However, optimal estimation problems of non-linear non-Gaussian state space models are analytically intractable in general. Sequential Monte Carlo (SMC) methods become a very popular class of simulation-based methods for the solution of optimal estimation problems. The advantages of SMC methods in comparison with classical filtering methods such as Kalman Filter and Extended Kalman Filter are that they are able to handle non-linear non-Gaussian scenarios without relying on any local linearization techniques. In this …


Variable Selection Via Penalized Regression And The Genetic Algorithm Using Information Complexity, With Applications For High-Dimensional -Omics Data, Tyler J. Massaro Aug 2016

Variable Selection Via Penalized Regression And The Genetic Algorithm Using Information Complexity, With Applications For High-Dimensional -Omics Data, Tyler J. Massaro

Doctoral Dissertations

This dissertation is a collection of examples, algorithms, and techniques for researchers interested in selecting influential variables from statistical regression models. Chapters 1, 2, and 3 provide background information that will be used throughout the remaining chapters, on topics including but not limited to information complexity, model selection, covariance estimation, stepwise variable selection, penalized regression, and especially the genetic algorithm (GA) approach to variable subsetting.

In chapter 4, we fully develop the framework for performing GA subset selection in logistic regression models. We present advantages of this approach against stepwise and elastic net regularized regression in selecting variables from a …


Numerical Solutions Of Stochastic Differential Equations, Liguo Wang Aug 2016

Numerical Solutions Of Stochastic Differential Equations, Liguo Wang

Doctoral Dissertations

In this dissertation, we consider the problem of simulation of stochastic differential equations driven by Brownian motions or the general Levy processes. There are two types of convergence for a numerical solution of a stochastic differential equation, the strong convergence and the weak convergence. We first introduce the strong convergence of the tamed Euler-Maruyama scheme under non-globally Lipschitz conditions, which allow the polynomial growth for the drift and diffusion coefficients. Then we prove a new weak convergence theorem given that the drift and diffusion coefficients of the stochastic differential equation are only twice continuously differentiable with bounded derivatives up to …


Thermal Analysis In A Triple-Layered Skin Structure With Embedded Vasculature, Tumor, And Gold Nanoshells, Casey O. Orndorff Jul 2016

Thermal Analysis In A Triple-Layered Skin Structure With Embedded Vasculature, Tumor, And Gold Nanoshells, Casey O. Orndorff

Doctoral Dissertations

In hyperthermia skin cancer treatment, the objective is to control laser heating of the tumor (target temperatures of 42-46 °C) so that the temperatures of the normal tissue surrounding the tumor remains low enough not to damage the normal tissue. However, obtaining accurate temperature distributions in living tissue related to hyperthermia skin cancer treatment without using an intruding sensor is a challenge. The objective of this dissertation research is to develop a mathematical model that can accurately predict the temperature distribution in the tumor region and surrounding normal tissue induced by laser irradiation. The model is based on a modified …


Direct And Inverse Scattering Problems For Domains With Multiple Corners, Jiang Yihong Jul 2016

Direct And Inverse Scattering Problems For Domains With Multiple Corners, Jiang Yihong

Doctoral Dissertations

Direct and inverse scattering problems have wide applications in geographical exploration, radar, sonar, medical imaging and non-destructive testing. In many applications, the obstacles are not smooth. Corner singularity challenges the design of a forward solver. Also, the nonlinearity and ill-posedness of the inverse problem challenge the design of an efficient, robust and accurate imaging method.

This dissertation presents numerical methods for solving the direct and inverse scattering problems for domains with multiple corners. The acoustic wave is sent from the transducers, scattered by obstacles and received by the transducers. This forms the response matrix data. The goal for the direct …


Computational Micro-Flow With Spectral Element Method And High Reynolds Number Flow With Discontinuous Galerkin Finite Element Method, Haibo Zhang Jul 2016

Computational Micro-Flow With Spectral Element Method And High Reynolds Number Flow With Discontinuous Galerkin Finite Element Method, Haibo Zhang

Doctoral Dissertations

In this dissertation, two numerical methods with high order accuracy, Spectral Element Method (SEM) and Discontinuous Galerkin Finite Element Method (DG-FEM), are chosen to solve problems in Computational Fluid Dynamics (CFD). The merits of these two methods will be discussed and utilized in different kinds of CFD problems. The simulations of the micro-flow systems with complex geometries and physical applications will be presented by SEM. Moreover, the numerical solutions for the Hyperbolic Flow will be obtained by DG-FEM. By solving problems with these two methods, the differences between them will be discussed as well.

Compressible Navier-Stokes equations with Electro-osmosis body …


Experimental Investigation And Numerical Simulation Of A Copper Micro-Channel Heat Exchanger With Hfe-7200 Working Fluid, Eric Borquist Jul 2016

Experimental Investigation And Numerical Simulation Of A Copper Micro-Channel Heat Exchanger With Hfe-7200 Working Fluid, Eric Borquist

Doctoral Dissertations

Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost, …


Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi May 2016

Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi

Doctoral Dissertations

Metal particles of the dimensions of the order of 1 to 100's of nanometers show unique properties that are not clearly evident in their bulk state. These nanoparticles are highly reactive and sensitive to the changes in the vicinity of the particle surface and hence find applications in the field of sensing of chemical and biological agents, catalysis, energy harvesting, data storage and many more. By synthesizing bimetallic nanoparticles, a single nanoparticle can show multifunctional characteristics. The focus of this thesis is to detail the synthesis and understand the properties of bimetallic nanomaterial systems that show interesting optical, chemical, and …


Biophysical Studies Of Cell Division Protein Localization Mechanisms In Escherichia Coli, Matthew Wayne Bailey May 2016

Biophysical Studies Of Cell Division Protein Localization Mechanisms In Escherichia Coli, Matthew Wayne Bailey

Doctoral Dissertations

How nanometer-scale proteins position accurately within micron-scale bacteria has intrigued both biologists and physicists alike. A critical process requiring precise protein localization is cell division. In most bacteria, cell division starts with the self-assembly of the FtsZ proteins into filaments that form a ring-like structure encircling the cell at its middle, the Z-ring. The Z-ring is a scaffold for additional proteins that synthesize the lateral cell wall which separates the two daughter cells. If division planes are misplaced relative to bacterial chromosomes, also called nucleoids, daughter cells with incomplete genetic material can be produced. In Escherichia coli, research carried out …


Mining Uranium From Seawater: A Coordination Chemistry Approach, Nada Mehio May 2016

Mining Uranium From Seawater: A Coordination Chemistry Approach, Nada Mehio

Doctoral Dissertations

Poly(acrylamidoxime) fibers are the current state-of-the-art adsorbent for mining uranium from seawater. However, the amidoxime group is not perfectly selective towards the uranyl cation, in particular, competition with transition metal cations remains a major challenge. In order for subsequent generations of chelating polymer adsorbents to be improved, the coordination chemistry of amidoxime-uranyl and -transition metal cation complexes needs to be better understood. While the coordination mode of amidoxime-uranyl complexes has been established in the literature, a number of amidoxime-transition metal cation complex binding motifs can be observed on the Cambridge Structrural Database. Likewise, the formation constants, or log K values, …


Pulsed-Laser Induced Dewetting Of Metallic Nanostructures, Christopher Aidan Hartnett May 2016

Pulsed-Laser Induced Dewetting Of Metallic Nanostructures, Christopher Aidan Hartnett

Doctoral Dissertations

This dissertation explores the fluid dynamics of nano and microscale liquid metal filaments, with an emphasis on experimentally investigating the influences and causes of filament breakup and metallic nanostructure formation. Understanding and manipulating the liquid state properties of materials, especially metals, have the potential to advance the development of future technology, particularly nanoscale technology. The combination of top-down nanofabrication techniques with bottom-up, intrinsic self-assembly mechanisms are a powerful fusion, because it permits new and unusual nanostructures to be created, whilst revealing interesting nanoscale physics.

In fluid dynamics, wetting and dewetting is the spontaneous natural process that occurs when a liquid …


Fundamental Physics With Cold Neutron Beams, Kyle Brandon Grammer May 2016

Fundamental Physics With Cold Neutron Beams, Kyle Brandon Grammer

Doctoral Dissertations

The neutron exhibits rich physics both as a tool for studying materials, particle and nuclear physics, as well as the object of experimental study. The neutron lifetime is an important input to Big Bang Nucleosynthesis models and is currently known only to approximately 0.3\% with the most precise measurements from two different experimental techniques in disagreement by more than 3$\sigma$ [sigma]. Parity violation has been the subject of study since its discovery in 1957. Parity violation experiments provide access to studying the hadronic weak interaction, which is otherwise suppressed by several orders of magnitude below that of the strong interaction. …


Spin Flipper, Neutron Polarimetry, And Simulation, For The N3he Experiment, Christopher Bradshaw Hayes May 2016

Spin Flipper, Neutron Polarimetry, And Simulation, For The N3he Experiment, Christopher Bradshaw Hayes

Doctoral Dissertations

The n3He experiment constructed on FnPB [Fundamental neutron Physics Beamline-13] probes the PV [parity violating] nuclear force by measuring the statistical distribution of decay protons which result from the interaction of helium-3 nuclei with a beam of cold neutrons. Pulses of neutrons at 60 Hz are generated by the SNS [Spallation Neutron Source] from a 1 GeV proton beam colliding with a liquid Mercury target. Spalled neutrons are then focused into an intense cold neutron beam thru the use of a liquid hydrogen moderator and a neutron guide making the beam an effective tool as a low energy probe of …


An Intelligent Robot And Augmented Reality Instruction System, Christopher M. Reardon May 2016

An Intelligent Robot And Augmented Reality Instruction System, Christopher M. Reardon

Doctoral Dissertations

Human-Centered Robotics (HCR) is a research area that focuses on how robots can empower people to live safer, simpler, and more independent lives. In this dissertation, I present a combination of two technologies to deliver human-centric solutions to an important population. The first nascent area that I investigate is the creation of an Intelligent Robot Instructor (IRI) as a learning and instruction tool for human pupils. The second technology is the use of augmented reality (AR) to create an Augmented Reality Instruction (ARI) system to provide instruction via a wearable interface.

To function in an intelligent and context-aware manner, both …


Performance Analysis And Modeling Of Task-Based Runtimes, Blake Andrew Haugen May 2016

Performance Analysis And Modeling Of Task-Based Runtimes, Blake Andrew Haugen

Doctoral Dissertations

The shift toward multicore processors has transformed the software and hardware landscape in the last decade. As a result, software developers must adopt parallelism in order to efficiently make use of multicore CPUs. Task-based scheduling has emerged as one method to reduce the complexity of parallel computing. Although task-based scheduling has been around for many years, the inclusion of task dependencies in OpenMP 4.0 suggests the paradigm will be around for the foreseeable future.

While task-based schedulers simplify the process of parallel software development, they can obfuscate the performance characteristics of the execution of an algorithm. Additionally, they can create …


Novel Methods And Sensors For The Analysis Of Trace Chemicals With Potential Environmental Applications, Samuel Mason Rosolina May 2016

Novel Methods And Sensors For The Analysis Of Trace Chemicals With Potential Environmental Applications, Samuel Mason Rosolina

Doctoral Dissertations

The work in this dissertation focuses on the detection and analysis of trace chemicals in biological and environmental samples. Methods for the electrochemical detection of heavy metals Cd(II) [cadmium] and Pb(II) [lead], and the catalytic metal Pd(II) [palladium] in pharmaceutical ingredients have been optimized without the necessity of sample pretreatment. The metals can be analyzed simultaneously as well as individually, and the study includes the first known instance of the use of anodic stripping voltammetry (ASV) to detect metals in dimethyl sulfoxide (DMSO) solutions. Another method, based on ASV, has been optimized and evaluated for the purpose of mercury(II) analysis …


Development Of Novel Analytical Methods With The Aim Of Forensic Analyte Detection Using Ultra-Thin Layer Chromatography, Surface Enhanced Raman Spectroscopy, And Magneto-Elastic Wire Sensing, Nichole Ann Crane May 2016

Development Of Novel Analytical Methods With The Aim Of Forensic Analyte Detection Using Ultra-Thin Layer Chromatography, Surface Enhanced Raman Spectroscopy, And Magneto-Elastic Wire Sensing, Nichole Ann Crane

Doctoral Dissertations

The purpose of this dissertation is to develop analytical methods that aid in the detection of forensic analytes. Forensic analytes require methods with increased sensitivity and low limit of detection capabilities. Improvements in separation techniques, surface enhanced Raman spectroscopic techniques, and wire-less gas sensing can each assist in the detection of trace evidence.

When surface enhanced Raman is coupled with thin-layer chromatography a mixture of compounds can be separated and transferred to a metal substrate to be detected using Raman spectroscopy. Surface enhanced Raman scattering enhances the Raman signal intensity by placing a metal substrate in close proximity to an …