Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Publications

Discipline
Institution
Keyword
Publication Year

Articles 1441 - 1470 of 1942

Full-Text Articles in Physical Sciences and Mathematics

Remote Hydrogen Plasma Processing Of Zno Single Crystal Surfaces, Yuri M. Strzhemechny, John Nemergut, Phillip E. Smith, Junjik Bae, David C. Look, Leonard J. Brillson Oct 2003

Remote Hydrogen Plasma Processing Of Zno Single Crystal Surfaces, Yuri M. Strzhemechny, John Nemergut, Phillip E. Smith, Junjik Bae, David C. Look, Leonard J. Brillson

Physics Faculty Publications

We have studied the effects of remote hydrogen plasma treatment on the defect characteristics in single crystal ZnO. Temperature-dependent (9–300 K) and excitation intensity-dependent photoluminescence spectra reveal that H-plasma exposure of ZnO effectively suppresses the free-exciton transition and redistributes intensities in the bound-exciton line set and two-electron satellites with their phonon replicas. The resultant spectra after hydrogenation exhibit a relative increase in intensity of the I4 (3.363 eV) peak, thought to be related to a neutral donor bound exciton, and a peak feature at 3.366 eV with a distinctly small thermal activation energy. Hydrogenation also produces a violet 100 …


On The Nitrogen Vacancy In Gan, David C. Look, Gary C. Farlow, P. J. Drevinsky, D. F. Bliss, J. R. Sizelove Oct 2003

On The Nitrogen Vacancy In Gan, David C. Look, Gary C. Farlow, P. J. Drevinsky, D. F. Bliss, J. R. Sizelove

Physics Faculty Publications

The dominant electrically active defect produced by 0.42 MeV electron irradiation in GaN is a 70 meV donor. Since only N-sublattice displacements can be produced at this energy, and since theory predicts that the N interstitial is a deep acceptor in n-type GaN, we argue that the 70 meV donor is most likely the isolated N vacancy. The background shallow donors, in the 24–26 meV range, actually decrease in concentration, probably due to interactions with mobile N interstitials that are produced by the irradiation. Thus, the recent assignment of a photoluminescence (PL) line as an exciton bound to a …


Observation Of 430 Nm Electroluminescence From Zno/Gan Heterojunction Light-Emitting Diodes, Ya I. Alivov, J. E. Van Nostrand, David C. Look, M. V. Chukichev, B. M. Ataev Oct 2003

Observation Of 430 Nm Electroluminescence From Zno/Gan Heterojunction Light-Emitting Diodes, Ya I. Alivov, J. E. Van Nostrand, David C. Look, M. V. Chukichev, B. M. Ataev

Physics Faculty Publications

In this work, we report on the growth, fabrication, and device characterization of wide-band-gap heterojunction light-emitting diodes based on the n-ZnO/p-GaN material system. The layer structure is achieved by first growing a Mg-doped GaN film of thickness 1 μm on Al2O3(0001) by molecular-beam epitaxy, then by growing Ga-doped ZnO film of thickness 1 μm by chemical vapor deposition on the p-GaN layer. Room-temperature electroluminescence in the blue-violet region with peak wavelength 430 nm is observed from this structure under forward bias. Light–current characteristics of these light-emitting diodes are reported, and a superlinear …


Dielectric Permittivity And Electric Modulus In Bi2ti4o11, Jianjun Liu, Chun-Gang Duan, Wei-Guo Yin, Wai-Ning Mei, Robert W. Smith, John R. Hardy Aug 2003

Dielectric Permittivity And Electric Modulus In Bi2ti4o11, Jianjun Liu, Chun-Gang Duan, Wei-Guo Yin, Wai-Ning Mei, Robert W. Smith, John R. Hardy

Physics Faculty Publications

Frequency and temperature dependences of dielectric permittivity and electric modulus of pure and Ba-doped Bi2Ti4O11 were studied in the ranges of 1021–106 Hz and 2150–350 °C, respectively. We found that the antiferroelectric phase transition temperature of Bi2Ti4O11 decreases with Ba doping. In the permittivity studies, we also observed dielectric relaxation peaks shift to higher temperature with increasing frequency. Furthermore, in the electric modulus formalism, conducting peaks were uncovered above 150 °C in addition to the dielectric relaxation peak. We discussed the mechanisms for the dielectric relaxation and conduction processes based on TiO6 octahedra distortion and a space-charge model.


Frequency Scanned Interferometer Demonstration System, Tim Blass, Jason A. Deibel, Sven Nyberg, Keith Riles, Haijun Yang Jul 2003

Frequency Scanned Interferometer Demonstration System, Tim Blass, Jason A. Deibel, Sven Nyberg, Keith Riles, Haijun Yang

Physics Faculty Publications

No abstract provided.


Entropic Characterization Of Distributive Mixing In Polymer Processing Equipment, Winston Wang, Ica Manas Zloczower, Miron Kaufman Jul 2003

Entropic Characterization Of Distributive Mixing In Polymer Processing Equipment, Winston Wang, Ica Manas Zloczower, Miron Kaufman

Physics Faculty Publications

Mixing is an integral component of most polymer processing operations as material properties are highly influenced by the quality of mixing. The degree of distributive mixing (system homogeneity) is assessed by calculating the evolution of Renyi relative entropies for the minor component along a continuous processing equipment. The Renyi entropy involves a β parameter, which represents weighting given to the concentration of the minor component in small, localized regions. Different aspects of mixing can thus be analyzed, from the amount of void spaces to the concentration of the region where mixing is the worst in terms of the minor component. …


Effect Of H-2 On The Martian Ionosphere: Implications For Atmospheric Evolution, Jane L. Fox Jun 2003

Effect Of H-2 On The Martian Ionosphere: Implications For Atmospheric Evolution, Jane L. Fox

Physics Faculty Publications

Because H2 reacts efficiently with O+, CO2 +, CO+, and N2 +, the molecular hydrogen abundance assumed in models of the Martian ionosphere greatly affects the high altitude density profiles of these ions. We have found that models of the low solar activity Martian ionosphere exhibit much smaller O+ densities than the measured values if the adopted H2 abundance is of the order of 40 ppm, the value proposed in a 1998 model of the Martian atmosphere. For a model based on the recently measured H2 abundance of …


Use Of Optical Tweezers For Colloid Science, Andrew Resnick Jun 2003

Use Of Optical Tweezers For Colloid Science, Andrew Resnick

Physics Faculty Publications

A space-borne optical tweezer apparatus for use with colloidal crystallization experiments has been characterized. The trapping force has been measured as a function of index mismatch between colloidal microspheres and the surrounding fluid and as a function of particle size. This work also presents a method to determine the refractive index of a colloidal microsphere, which is then used to calculate the applied trapping force for the case of an arbitrary background fluid. This is useful for work with dense colloidal suspensions when the usual (e.g., Stokes flow) trap force measurement methods do not apply, as well as microrheological studies …


Ga Vacancies As Dominant Intrinsic Acceptors In Gan Grown By Hydride Vapor Phase Epitaxy, J. Oila, J. Kivioja, V. Ranki, K. Saarinen, David C. Look, Richard J. Molnar, S. S. Park, S. K. Lee, J. Y. Han May 2003

Ga Vacancies As Dominant Intrinsic Acceptors In Gan Grown By Hydride Vapor Phase Epitaxy, J. Oila, J. Kivioja, V. Ranki, K. Saarinen, David C. Look, Richard J. Molnar, S. S. Park, S. K. Lee, J. Y. Han

Physics Faculty Publications

Positron annihilation measurements show that negative Ga vacancies are the dominant acceptors in n-type gallium nitride grown by hydride vapor phase epitaxy. The concentration of Ga vacancies decreases, from more than 1019 to below 1016 cm−3, as the distance from the interface region increases from 1 to 300 μm. These concentrations are the same as the total acceptor densities determined in Hall experiments. The depth profile of O is similar to that of VGa, suggesting that the Ga vacancies are complexed with the oxygen impurities.


Small Angle Neutron Scattering From D2o–H2o Nanodroplets And Binary Nucleation Rates In A Supersonic Nozzle, Christopher H. Heath, Kiril A. Streletzky, Barbara E. Wyslouzil, Judith Woelk, Reinhard Strey Mar 2003

Small Angle Neutron Scattering From D2o–H2o Nanodroplets And Binary Nucleation Rates In A Supersonic Nozzle, Christopher H. Heath, Kiril A. Streletzky, Barbara E. Wyslouzil, Judith Woelk, Reinhard Strey

Physics Faculty Publications

Small angle neutron scattering (SANS) experiments were used to characterize binary nanodroplets composed of D2O and H2O. The droplets were formed by expanding dilute mixtures of condensible vapor in a N2 carrier gas through a supersonic nozzle, while maintaining the onset of condensation at a fixed position in the nozzle. It is remarkable, given the small coherent scattering length density of light water, that even the pure H2O aerosol gave a scattering signal above background. The scattering spectra were analyzed assuming a log-normal distribution of droplets. On average, the geometric radius of the nanodroplets rg was rg=13 (±1) nm, the …


Plasma-Etching-Enhanced Deep Centers In N-Gan Grown By Metalorganic Chemical-Vapor Deposition, Z-Q. Fang, David C. Look, X. L. Wang, J. Han, F. A. Khan, I. Adesida Mar 2003

Plasma-Etching-Enhanced Deep Centers In N-Gan Grown By Metalorganic Chemical-Vapor Deposition, Z-Q. Fang, David C. Look, X. L. Wang, J. Han, F. A. Khan, I. Adesida

Physics Faculty Publications

By using deep-level transient spectroscopy (DLTS), deep centers have been characterized in unintentionally doped n-GaN samples grown by metalorganic chemical-vapor deposition and subjected to inductively coupled plasma reactive ion etching. At least six DLTS traps exist in the control sample: A1 (∼0.90 eV), Ax (∼0.72 eV), B (0.61 eV), C1 (0.44 eV), D (0.25 eV), and E1 (0.17 eV), with B dominant. Then, as the etching bias-voltage increases from −50 to −150 V, trap D increases strongly and becomes dominant, while traps A1, C (0.34 eV), and E1 increase at a slower …


Role Of The Tunneling Ray In Near-Critical-Angle Scattering By A Dielectric Sphere, James A. Lock Mar 2003

Role Of The Tunneling Ray In Near-Critical-Angle Scattering By A Dielectric Sphere, James A. Lock

Physics Faculty Publications

The scattering far zone for light transmitted through a sphere following p - 1 internal reflections by a family of near-grazing incident rays is subdivided into a lit region and a shadow region. The sharpness of the ray theory transition between the lit and the shadow regions is smoothed in wave theory by radiation shed by electromagnetic surface waves. It is shown that when higher-order terms in the physical optics approximation to the phase of the partial-wave scattering amplitudes are included, the transition between the lit and the shadow regions becomes a two-ray-to-zero-ray transition, called a superweak caustic in analogy …


Detection Sensitivity Optimization Of Optical Signals Generated By Fiber Optic Bragg Gratings Under Dynamic Excitation, John Lekki, James A. Lock Feb 2003

Detection Sensitivity Optimization Of Optical Signals Generated By Fiber Optic Bragg Gratings Under Dynamic Excitation, John Lekki, James A. Lock

Physics Faculty Publications

The dynamic response of a fiber optic Bragg grating to mechanical vibrations is examined both theoretically and experimentally. The theoretical expressions describing the consequences of changes in the grating's reflection spectrum are derived for partially coherent beams in an interferometer. The analysis is given in terms of the dominant wavelength, optical bandwidth, and optical path difference of the interfering signals. Changes in the reflection spectrum caused by a periodic stretching and compression of the grating are experimentally measured using an unbalanced Michelson interferometer, a Michelson interferometer with a nonzero optical path difference. The interferometer's sensitivity to changes in the dominant …


Analysis Of The Shadow-Sausage Effect Caustic, James A. Lock, Charles L. Adler, Diana Ekelman, Jonathan Mulholland, Brian Keating Jan 2003

Analysis Of The Shadow-Sausage Effect Caustic, James A. Lock, Charles L. Adler, Diana Ekelman, Jonathan Mulholland, Brian Keating

Physics Faculty Publications

We analyze the optical caustic produced by light refracted at the curved meniscus surrounding a cylindrical rod standing partially out of a liquid-filled container. When the rod is tilted from the vertical or when light is diagonally incident, the caustic is a four-cusped astroid with two of its cusps obscured by the rod's shadow. If a portion of the flat end of the rod is raised above the water level, the caustic evolves into a pattern of five interlocking cusps. The five cusps result from symmetry breaking of a three-cusped surface perturbation caustic. (C) 2003 Optical Society of America.


Simulating Coronas In Color, Stanley D. Gedzelman, James A. Lock Jan 2003

Simulating Coronas In Color, Stanley D. Gedzelman, James A. Lock

Physics Faculty Publications

Coronas are simulated in color by use of the Mie scattering theory of light by small droplets through clouds of finite optical thickness embedded in a Rayleigh scattering atmosphere. The primary factors that affect color, visibility, and number of rings of coronas are droplet size, width of the size distribution, and cloud optical thickness. The color sequence of coronas and iridescence varies when the droplet radius is smaller than similar to6-mum. As radius increases to approximately 3.5 mum, new color bands appear at the center of the corona and fade as they move outward. As the radius continues to increase …


Light And Color In The Open Air: Introduction To The Feature Issue, Charles L. Adler, James A. Lock Jan 2003

Light And Color In The Open Air: Introduction To The Feature Issue, Charles L. Adler, James A. Lock

Physics Faculty Publications

This special feature of Applied Optics reports the results of new experimental and theoretical research concerning a number of naked-eye optical phenomena, including ice-crystal halo displays, mirages, rainbows, glories, optical caustics, clear-sky phenomena, cloud coronas, cloud iridescence, and the extinction of skylight. (C) 2003 Optical Society of America.


Experimental Observation Of Total-Internal-Reflection Rainbows, Charles L. Adler, James A. Lock, Jonathon Mulholland, Brian Keating, Diana Ekelman Jan 2003

Experimental Observation Of Total-Internal-Reflection Rainbows, Charles L. Adler, James A. Lock, Jonathon Mulholland, Brian Keating, Diana Ekelman

Physics Faculty Publications

A new class of rainbows is created when a droplet is illuminated from the inside by a point light source. The position of the rainbow depends on both the index of refraction of the droplet and the position of the light source, and the rainbow vanishes when the point source is too close to the center of the droplet. Here we experimentally measure the position of the transmission and one-internal-reflection total-internal-reflection rainbows, and the standard (primary) rainbow, as a function of light-source position. (C) 2003 Optical Society of America.


E/B Decomposition Of Finite Pixelized Cmb Maps, Emory F. Bunn, Matias Zaldarriaga, Max Tegmark, Angelica De Oliveira-Costa Jan 2003

E/B Decomposition Of Finite Pixelized Cmb Maps, Emory F. Bunn, Matias Zaldarriaga, Max Tegmark, Angelica De Oliveira-Costa

Physics Faculty Publications

Separation of the E and B components of a microwave background polarization map or a weak lensing map is an essential step in extracting science from it, but when the map covers only part of the sky and/or is pixelized, this decomposition cannot be done perfectly. We present a method for decomposing an arbitrary sky map into a sum of three orthogonal components that we term ‘‘pure E,’’ ‘‘pure B,’’ and ‘‘ambiguous.’’ The fluctuations in the pure E and B maps are due only to the E and B power spectra, respectively, whereas the source of those in …


Ultrafine Nife2o4 Powder Fabricated From Reverse Microemulsion Process, Jiye Fang, Narayan Shama, Le Duc Tung, Eun Young Shin, Charles J. O'Connor, Kevin L. Stokes, Gabriel Caruntu, John B. Wiley, Leonard Spinu, Jinke Tang Jan 2003

Ultrafine Nife2o4 Powder Fabricated From Reverse Microemulsion Process, Jiye Fang, Narayan Shama, Le Duc Tung, Eun Young Shin, Charles J. O'Connor, Kevin L. Stokes, Gabriel Caruntu, John B. Wiley, Leonard Spinu, Jinke Tang

Physics Faculty Publications

NiFe2O4 ultrafine powder with high crystallinity has been prepared through a reverse microemulsion route. The composition in starting solution was optimized, and the resulting NiFe2O4 was formed at temperature of around 550–600 °C, which is much lower than that observed from the solid-state reaction. Magnetic investigation indicates that samples are soft-magnetic materials with low coercivity and with the saturation magnetization close to the bulk value of Ni ferrite.


Self-Assembly Of Fept Nanoparticles Into Nanorings, Weilie L. Zhou, Jibao He, Jiye Fang, Tuyet-Anh Huynh, Trevor J. Kennedy, Kevin L. Stokes, Charles J. O'Connor Jan 2003

Self-Assembly Of Fept Nanoparticles Into Nanorings, Weilie L. Zhou, Jibao He, Jiye Fang, Tuyet-Anh Huynh, Trevor J. Kennedy, Kevin L. Stokes, Charles J. O'Connor

Physics Faculty Publications

The application of nanoparticles as quantum dots in nanoelectronics demands their arrangement in ordered arrays. Shape controlled self-assembly is a challenge due to the difficulties of obtaining proper self-assembling parameters, such as solvent concentration, organic ligands, and nanoparticle size. In this article, hard magnetic FePt nanoparticles were synthesized using a combination approach of reduction and thermal decomposition. The nanoparticles are about 4.5 nm and appeared as truncated octahedral enclosed by the

{100} and {111}

crystal facets of fcc structure. The nanoparticles are of hexagonal close packing and orient randomly in the self-assembly nanoarrays. By diluting the solution for large-area self-assembly, …


Mim And Nonlinear Least-Squares Inversions Of Aem Data In Barataria Basin, Louisiana, Melissa Whitten Bryan, Kenneth W. Holladay, Clyde J. Bergeron Jr., Juliette W. Ioup, George E. Ioup Jan 2003

Mim And Nonlinear Least-Squares Inversions Of Aem Data In Barataria Basin, Louisiana, Melissa Whitten Bryan, Kenneth W. Holladay, Clyde J. Bergeron Jr., Juliette W. Ioup, George E. Ioup

Physics Faculty Publications

An airborne electromagnetic survey was performed over the marsh and estuarine waters of the Barataria basin of Louisiana. Two inversion methods were applied to the measured data to calculate layer thicknesses and conductivities: the modified image method (MIM) and a nonlinear least-squares method of inversion using two two-layer forward models and one three-layer forward model, with results generally in good agreement. Uniform horizontal water layers in the near-shore Gulf of Mexico with the fresher (less saline, less conductive) water above the saltier (more saline, more conductive) water can be seen clearly. More complex near-surface layering showing decreasing salinity/conductivity with depth …


Kerr-Resonance-Condition-Coupled Enhancement In Magneto-Optic Media, A. De, A. Puri Jan 2003

Kerr-Resonance-Condition-Coupled Enhancement In Magneto-Optic Media, A. De, A. Puri

Physics Faculty Publications

We derive an expression for cyclotron frequency ωc, which sets Re[ϵ+ϵ]=1 in a magneto-optic (MO) substrate, at any incident photon energy. Thereby, at any desired part of the optical spectrum, large Kerr effects can be obtained, which are generally known to occur either at the free-charge-carrier-plasma-resonance frequency ωp, or at frequencies where active electronic transitions take place. Under these conditions, ωp is seen to play a very different role; it is seen that for any ω, the magnitude of the Kerr resonance in a single MO (InSb here) substrate increases …


Ep → Ep Π⁰ Reaction Studied In The Δ(1232) Mass Region Using Polarization Asymmetries, M. Bektasoglu, L. Ciciani, K.V. Dharmawardane, G. E. Dodge, T.A. Forest, C.E. Hyde-Wright, A. Klein, A. V. Klimenko, S. E. Kuhn, S. Stepanyan, L. B. Weinstein, Et Al., Clas Collaboration Jan 2003

Ep → Ep Π⁰ Reaction Studied In The Δ(1232) Mass Region Using Polarization Asymmetries, M. Bektasoglu, L. Ciciani, K.V. Dharmawardane, G. E. Dodge, T.A. Forest, C.E. Hyde-Wright, A. Klein, A. V. Klimenko, S. E. Kuhn, S. Stepanyan, L. B. Weinstein, Et Al., Clas Collaboration

Physics Faculty Publications

Measurements of the angular distributions of target and double-spin asymmetries for the Δ+(1232) in the exclusive channel p(e,e'p)π0 obtained at the Jefferson Lab in the Q2 range from 0.5 to 1.5 GeV2/c2 are presented. Results of the asymmetries are compared with the unitary isobar model [D. Drechsel , Nucl. Phys. A645, 145 (1999)], dynamical models [T. Sato and T. S. Lee, Phys. Rev. C 54, 2660 (1996); S. S. Kamalov , Phys. Lett. B 27, 522 (2001)], and the effective Lagrangian theory [R. M. Davidson , Phys. Rev. …


Spectral Functions Of The Falicov-Kimball Model With Electronic Ferroelectricity, Wei-Guo Yin, Wai-Ning Mei, Chun-Gang Duan, Hai-Qing Lin, John R. Hardy Jan 2003

Spectral Functions Of The Falicov-Kimball Model With Electronic Ferroelectricity, Wei-Guo Yin, Wai-Ning Mei, Chun-Gang Duan, Hai-Qing Lin, John R. Hardy

Physics Faculty Publications

We calculate the angular resolved photoemission spectrum of the Falicov-Kimball model with electronic ferroelectricity where d- and f-electrons have different hoppings. In mix-valence regimes, the presence of strong scattering processes between df excitons and a hole, created by emission of an electron, leads to the formation of pseudospin polarons and novel electronic structures with bandwidth scaling with that of df excitons. Especially, in the two-dimensional case, we find that flat regions exist near the bottom of the quasiparticle band in a wide range of the d- and f-level energy difference.


Hydrogen Incorporation And Diffusivity In Plasma-Exposed Bulk Zno, K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, B. Luo, F. Ren, David C. Look, J. M. Zavada Jan 2003

Hydrogen Incorporation And Diffusivity In Plasma-Exposed Bulk Zno, K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, B. Luo, F. Ren, David C. Look, J. M. Zavada

Physics Faculty Publications

Hydrogen incorporation depths of >25 μm were obtained in bulk, single-crystal ZnO during exposure to 2H plasmas for 0.5 h at 300 °C, producing an estimated diffusivity of ∼ 8×10−10 cm2/V⋅s at this temperature. The activation energy for diffusion was 0.17±0.12 eV, indicating an interstitial mechanism. Subsequent annealing at 500–600 °C was sufficient to evolve all of the hydrogen out of the ZnO, at least to the sensitivity of secondary ion mass spectrometry (<5×1015 cm−3). The thermal stability of hydrogen retention is slightly greater when the hydrogen is incorporated by direct implantation …


Molecular Dynamics Simulation Of The Order- Disorder Phase Transition In Solid Nano2, Wei-Guo Yin, Chun-Gang Duan, Wai-Ning Mei, Jianjun Liu, Robert W. Smith, John R. Hardy Jan 2003

Molecular Dynamics Simulation Of The Order- Disorder Phase Transition In Solid Nano2, Wei-Guo Yin, Chun-Gang Duan, Wai-Ning Mei, Jianjun Liu, Robert W. Smith, John R. Hardy

Physics Faculty Publications

We present molecular dynamics simulations of solid NaNO2 using pair potentials with the rigid-ion model. The crystal potential surface is calculated by using an a priori method which integrates the ab initio calculations with the Gordon-Kim electron gas theory. This approach is carefully examined by using different population analysis methods and comparing the intermolecular interactions resulting from this approach with those from the ab initio Hartree-Fock calculations. Our numerics show that the ferroelectric-paraelectric phase transition in solid NaNO2 is triggered by rotation of the nitrite ions around the crystallographical c axis, in agreement with recent x-ray experiments @Gohda et al., …


Comparison Of The Theoretical And Experimental Band Structure Of Poly (Vinylidene Fluoride) Crystal, Chun-Gang Duan, Wai-Ning Mei, John R. Hardy, Stephen Ducharme, Jaewu Choi, Peter A. Dowben Jan 2003

Comparison Of The Theoretical And Experimental Band Structure Of Poly (Vinylidene Fluoride) Crystal, Chun-Gang Duan, Wai-Ning Mei, John R. Hardy, Stephen Ducharme, Jaewu Choi, Peter A. Dowben

Physics Faculty Publications

The electronic structure and band symmetries of the ferroelectric phase of poly (vinylidene fluoride) (PVDF) are studied by using the first-principles density-functional method. Our calculated results agree well with the angle-resolved photoemission experiments. We find that the PVDF crystal has an energy gap of about 6 eV at the Γ-point. Large dispersion of the valence band is found only along the chain direction, which is consistent with the quasi-one-dimensional nature of PVDF. In particular, the band symmetries of the valence states deduced theoretically are in good agreement with experiment. Finally, further investigations on the electronic structure of poly(trifluoroethylene) (PTrFE) …


Modeling Of Hysteresis And Magnetization Curves For Hexagonally Ordered Electrodeposited Nanowires, Petru S. Fodor, Georgy M. Tsoi, Lowell E. Wenger Jan 2003

Modeling Of Hysteresis And Magnetization Curves For Hexagonally Ordered Electrodeposited Nanowires, Petru S. Fodor, Georgy M. Tsoi, Lowell E. Wenger

Physics Faculty Publications

A computational model has been developed to investigate how the magnetostatic interactions affect the hysteresis and magnetization curves for hexagonal arrays of magnetic nanowires. The magnetization coupling between nanowires arises from the stray fields produced by the other nanowires composing the array such that the field at each nanowire is the sum of the external field and the interaction field with the other nanowires. Using only two adjustable parameters: the interaction between nearest neighbors and the width of the Gaussian distribution in switching fields centered around the measuredcoercivity, simulations are compared with the experimentally measuredhysteresis and magnetization curves for electrodepositedCo0.45 …


Zero Magnetization States In Electrodeposited Co0.45fe0.55 Nanowire Arrays, Petru S. Fodor, Georgy M. Tsoi, Lowell E. Wenger Jan 2003

Zero Magnetization States In Electrodeposited Co0.45fe0.55 Nanowire Arrays, Petru S. Fodor, Georgy M. Tsoi, Lowell E. Wenger

Physics Faculty Publications

Co0.45Fe0.55 alloy nanowires with 12 to 35 nm diameter and 12 μm length were fabricated by electrodeposition in porous anodic alumina templates. The initial magnetization curves reveal that the zero magnetization state is not unique and is determined by the field history (acdemagnetization process) leading to the zero average moment state. For acdemagnetization processes with the field applied parallel to the nanowire axis, the subsequent magnetization curves suggest that an individual nanowire behaves as a single domain with neighboring nanowires being antiparallel to each other in the zero magnetization state. However, for a demagnetization process with the field applied perpendicular …


Coherent Backscattering Of Light In Atomic Systems: Application To Weak Localization In An Ensemble Of Cold Alkali-Metal Atoms, D. V. Kupriyanov, I. M. Sokolov, P. Kulatunga, C. I. Sukenik, M. D. Havey Jan 2003

Coherent Backscattering Of Light In Atomic Systems: Application To Weak Localization In An Ensemble Of Cold Alkali-Metal Atoms, D. V. Kupriyanov, I. M. Sokolov, P. Kulatunga, C. I. Sukenik, M. D. Havey

Physics Faculty Publications

Development of a theoretical treatment of multiple coherent light scattering in an ultracold atomic gas is reported. Specific application is made to coherent backscattering of a weak-radiation field from realistically modeled samples of ultracold atomic 85Rb. Comprehensive Monte Carlo simulations of the spatial, spectral, and polarization dependence of the backscattering line shape are made and compared with available experimental results.