Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

Discipline
Keyword
Publication Year

Articles 451 - 480 of 1762

Full-Text Articles in Physical Sciences and Mathematics

Strong-Disorder Magnetic Quantum Phase Transitions: Status And New Developments, Thomas Vojta Sep 2014

Strong-Disorder Magnetic Quantum Phase Transitions: Status And New Developments, Thomas Vojta

Physics Faculty Research & Creative Works

This article reviews the unconventional effects of random disorder on magnetic quantum phase transitions, focusing on a number of new experimental and theoretical developments during the last three years. On the theory side, we address smeared quantum phase transitions tuned by changing the chemical composition, for example in alloys of the type A1-xBx. We also discuss how the interplay of order parameter conservation and overdamped dynamics leads to enhanced quantum Griffiths singularities in disordered metallic ferromagnets. Finally, we discuss a semiclassical theory of transport properties in quantum Griffiths phases. Experimental examples include the ruthenates Sr1-x …


Fine-Structure Constant For Gravitational And Scalar Interactions, Ulrich D. Jentschura Aug 2014

Fine-Structure Constant For Gravitational And Scalar Interactions, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

Starting from the coupling of a relativistic quantum particle to the curved Schwarzschild space time, we show that the Dirac-Schwarzschild problem has bound states and calculate their energies including relativistic corrections. Relativistic effects are shown to be suppressed by the gravitational fine-structure constant αG=Gm1m2/(ℏc), where G is Newton's gravitational constant, c is the speed of light, and m1 and m2 ≫ m1 are the masses of the two particles. The kinetic corrections due to space-time curvature are shown to lift the familiar (n,j) degeneracy of the energy levels of …


Effect Of The Center-Of-Mass Approximation On The Scaling Of Electron-Capture Fully Differential Cross Sections, A. L. Harris, Don H. Madison Aug 2014

Effect Of The Center-Of-Mass Approximation On The Scaling Of Electron-Capture Fully Differential Cross Sections, A. L. Harris, Don H. Madison

Physics Faculty Research & Creative Works

We present results for p+He single electron capture and transfer with target excitation using the first Born approximation. The effect of approximating the center of mass of the helium atom and outgoing hydrogen atom at the respective nuclei is explored. Semianalytical results are compared for the calculations with and without the approximation, and it is shown that one must properly account for the center of mass of the atoms. It is also shown that this approximation is the result of the apparent v4 scaling that was previously observed with the four-body transfer with target excitation model.


Control Of Light Diffusion In A Disordered Photonic Waveguide, Raktim Sarma, Timofey Golubev, Alexey Yamilov, Hui Cao Jul 2014

Control Of Light Diffusion In A Disordered Photonic Waveguide, Raktim Sarma, Timofey Golubev, Alexey Yamilov, Hui Cao

Physics Faculty Research & Creative Works

We control the diffusion of light in a disordered photonic waveguide by modulating the waveguide geometry. In a single waveguide of varying cross-section, the diffusion coefficient changes spatially in two dimensions due to localization effects. The intensity distribution inside the waveguide agrees with the prediction of the self-consistent theory of localization. Our work shows that wave diffusion can be efficiently manipulated without modifying the structural disorder.


Rare Regions And Griffiths Singularities At A Clean Critical Point: The Five-Dimensional Disordered Contact Process, Thomas Vojta, John Igo, José A. Hoyos Jul 2014

Rare Regions And Griffiths Singularities At A Clean Critical Point: The Five-Dimensional Disordered Contact Process, Thomas Vojta, John Igo, José A. Hoyos

Physics Faculty Research & Creative Works

We investigate the nonequilibrium phase transition of the disordered contact process in five space dimensions by means of optimal fluctuation theory and Monte Carlo simulations. We find that the critical behavior is of mean-field type, i.e., identical to that of the clean five-dimensional contact process. It is accompanied by off-critical power-law Griffiths singularities whose dynamical exponent z' saturates at a finite value as the transition is approached. These findings resolve the apparent contradiction between the Harris criterion, which implies that weak disorder is renormalization-group irrelevant, and the rare-region classification, which predicts unconventional behavior. We confirm and illustrate our theory by …


Probing Long-Range Intensity Correlations Inside Disordered Photonic Nanostructures, Raktim Sarma, Alexey Yamilov, Pauf Neupane, Boris Shapiro, Hui Cao Jul 2014

Probing Long-Range Intensity Correlations Inside Disordered Photonic Nanostructures, Raktim Sarma, Alexey Yamilov, Pauf Neupane, Boris Shapiro, Hui Cao

Physics Faculty Research & Creative Works

We report the direct observation of the development of long-range spatial intensity correlation and the growth of intensity fluctuations inside random media. We fabricated quasi-two-dimensional disordered photonic structures and probed light transport from a third dimension. Good agreement between experiment and theory is obtained. We were able to manipulate the long-range intensity correlation and intensity fluctuations inside the disordered waveguides by simply varying the waveguide geometry.


Universality Of Returning Electron Wave Packet In High-Order Harmonic Generation With Midinfrared Laser Pulses, Anh-Thu Le, Hui Wei, Cheng Jin, Vu Ngoc Tuoc, Toru Morishita, C. D. Lin Jul 2014

Universality Of Returning Electron Wave Packet In High-Order Harmonic Generation With Midinfrared Laser Pulses, Anh-Thu Le, Hui Wei, Cheng Jin, Vu Ngoc Tuoc, Toru Morishita, C. D. Lin

Physics Faculty Research & Creative Works

We show that a returning electron wave packet in high-order harmonic generation (HHG) with midinfrared laser pulses converges to a universal limit for a laser wavelength above about 3µm. The results are consistent among the different methods: a numerical solution of the time-dependent Schrödinger equation, the strong-field approximation, and the quantum orbits theory. We further analyze how the contribution from different electron "trajectories" survives the macroscopic propagation in the medium. Our result thus provides a new framework for investigating the wavelength scaling law for the HHG yields.


Dynamical (E,2e) Investigations Of Structurally Related Cyclic Ethers, J. D. Builth-Williams, Luca Chiari, Penny A. Thorn, Susan M. Bellm, D. B. Jones, Hari Chaluvadi, Don H. Madison, Chuangang Ning, B. Lohmann, Oddur Ingólfsson, Michael J. Brunger Jul 2014

Dynamical (E,2e) Investigations Of Structurally Related Cyclic Ethers, J. D. Builth-Williams, Luca Chiari, Penny A. Thorn, Susan M. Bellm, D. B. Jones, Hari Chaluvadi, Don H. Madison, Chuangang Ning, B. Lohmann, Oddur Ingólfsson, Michael J. Brunger

Physics Faculty Research & Creative Works

Experimental and theoretical cross sections are presented for electron-impact ionization of a series of cyclic ethers.


Theoretical And Experimental Investigation Of (E, 2e) Ionization Of Argon 3p In Asymmetric Kinematics At Intermediate Energy, Sadek Amami, Melike Ulu, Zehra Nur Ozer, Murat Yavuz, Suay Kazgoz, Mevlut Dogan, Oleg Zatsarinny, Klaus Bartschat, Don H. Madison Jul 2014

Theoretical And Experimental Investigation Of (E, 2e) Ionization Of Argon 3p In Asymmetric Kinematics At Intermediate Energy, Sadek Amami, Melike Ulu, Zehra Nur Ozer, Murat Yavuz, Suay Kazgoz, Mevlut Dogan, Oleg Zatsarinny, Klaus Bartschat, Don H. Madison

Physics Faculty Research & Creative Works

The field of electron-impact ionization of atoms, or (e, 2e), has provided significant detailed information about the physics of collisions. For ionization of hydrogen and helium, essentially exact numerical methods have been developed which can correctly predict what will happen. For larger atoms, we do not have theories of comparable accuracy. Considerable attention has been given to ionization of inert gases and, of the inert gases, argon seems to be the most difficult target for theory. There have been several studies comparing experiment and perturbative theoretical approaches over the last few decades, and generally qualitative but not quantitative agreement is …


Evidence For Magnetic Clusters In Ni₁₋ₓvₓ Close To The Quantum Critical Concentration, R. Wang, S. Ubaid-Kassis, A. Schroeder, P. J. Baker, F. L. Pratt, S. J. Blundell, T. Lancaster, I. Franke, J. S. Möller, Thomas Vojta Jul 2014

Evidence For Magnetic Clusters In Ni₁₋ₓvₓ Close To The Quantum Critical Concentration, R. Wang, S. Ubaid-Kassis, A. Schroeder, P. J. Baker, F. L. Pratt, S. J. Blundell, T. Lancaster, I. Franke, J. S. Möller, Thomas Vojta

Physics Faculty Research & Creative Works

The d-metal alloy Ni1-xVx undergoes a quantum phase transition from a ferromagnetic ground state to a paramagnetic ground state as the vanadium concentration x is increased. We present magnetization, ac-susceptibility and muon-spin relaxation data at several vanadium concentrations near the critical concentration xc ~ 11.6 % at which the onset of ferromagnetic order is suppressed to zero temperature. Below xc, the muon data reveal a broad magnetic field distribution indicative of a long-range ordered ferromagnetic state with spatial disorder. We show evidence of magnetic clusters in the ferromagnetic phase and close to the phase …


Theoretical Triple-Differential Cross Sections Of A Methane Molecule By A Proper-Average Method, Hari Chaluvadi, C. G. Ning, Don H. Madison Jun 2014

Theoretical Triple-Differential Cross Sections Of A Methane Molecule By A Proper-Average Method, Hari Chaluvadi, C. G. Ning, Don H. Madison

Physics Faculty Research & Creative Works

For the last few years, our group has calculated cross sections for electron-impact ionization of molecules using the molecular three-body distorted-wave approximation coupled with the orientation-averaged molecular orbital (OAMO) approximation. This approximation was very successful for calculating ionization cross sections for hydrogen molecules and to a lesser extent nitrogen molecules. Recently we used the approximation to calculate single ionization cross sections for the 1t2 state of methane (CH4) and we found major discrepancies with the experimental data. Here we investigate the validity of the OAMO approximation by calculating cross sections that have been properly averaged over all …


The Structure Of D₂O-Nonane Nanodroplets, Harshad Pathak, Abdalla Obeidat, Gerald Wilemski, Barbara Wyslouzil Jun 2014

The Structure Of D₂O-Nonane Nanodroplets, Harshad Pathak, Abdalla Obeidat, Gerald Wilemski, Barbara Wyslouzil

Physics Faculty Research & Creative Works

We study the internal structure of nanometer-sized D2O-nonane aerosol droplets formed in supersonic nozzle expansions using a variety of experimental techniques including small angle X-ray scattering (SAXS). By fitting the SAXS spectra to a wide range of droplet structure models, we find that the experimental results are inconsistent with mixed droplets that form aqueous core-organic shell structures, but are quite consistent with spherically asymmetric lens-on-sphere structures. The structure that agrees best with the SAXS data and Fourier transform infra-red spectroscopy measurements is that of a nonane lens on a sphere of D2O with a contact angle in the …


Methods And Results Of A Search For Gravitational Waves Associated With Gamma-Ray Bursts Using The Geo 600, Ligo, And Virgo Detectors, J. Aasi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jun 2014

Methods And Results Of A Search For Gravitational Waves Associated With Gamma-Ray Bursts Using The Geo 600, Ligo, And Virgo Detectors, J. Aasi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz-1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO 600 and one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to analyze GRB events with large sky localization uncertainties, for example the localizations provided by the Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be computationally intensive when the GRB sky position is not well localized, due to the corrections required for the difference in arrival time between detectors. …


Fully Differential Cross Sections For Electron-Impact Excitation-Ionization Of Aligned D₂, Esam Ali, A. L. Harris, J. Lower, E. Weigold, Chuang-Gang Ning, Don H. Madison Jun 2014

Fully Differential Cross Sections For Electron-Impact Excitation-Ionization Of Aligned D₂, Esam Ali, A. L. Harris, J. Lower, E. Weigold, Chuang-Gang Ning, Don H. Madison

Physics Faculty Research & Creative Works

We examine fully differential cross sections for 176 eV electron-impact dissociative excitation-ionization of orientated D2 for transitions to final ion states 2sσg, 2pσu, and 2pπu. In previous work [Phys. Rev. A 88, 062705 (2013)PLRAAN1050-294710.1103/PhysRevA.88.062705], we calculated these cross sections using the molecular four-body distorted wave (M4DW) method with the ground-state D2 wave function being approximated by a product of two Dyson 1s-type orbitals. The theoretical results were compared with experimental measurements for five different orientations of the target molecule (four in the scattering plane and one perpendicular to the scattering plane). For the unresolved …


Search For Gravitational Radiation From Intermediate Mass Black Hole Binaries In Data From The Second Ligo-Virgo Joint Science Run, J. Aasi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jun 2014

Search For Gravitational Radiation From Intermediate Mass Black Hole Binaries In Data From The Second Ligo-Virgo Joint Science Run, J. Aasi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009-October 2010) and was sensitive to IMBHBs with a range up to ∼200Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and 450M and mass ratios between 0.25 and 1 were placed …


Search For Gravitational Waves Associated With Γ-Ray Bursts Detected By The Interplanetary Network, J. Aasi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jun 2014

Search For Gravitational Waves Associated With Γ-Ray Bursts Detected By The Interplanetary Network, J. Aasi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search …


The Clustering Of Galaxies In The Sdss-Iii Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations In The Data Releases 10 And 11 Galaxy Samples, Lauren Anderson, Eric Aubourg, Shun Saito, For Full List Of Authors, See Publisher's Website. May 2014

The Clustering Of Galaxies In The Sdss-Iii Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations In The Data Releases 10 And 11 Galaxy Samples, Lauren Anderson, Eric Aubourg, Shun Saito, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations (BAO) in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey, which is part of the Sloan Digital Sky Survey III. Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately 8500 square degrees and the redshift range 0.2 < z < 0.7. We also compare these results with those from the publicly released DR9 and DR10 samples. Assuming a concordance Λ cold dark matter (ΛCDM) cosmological model, the DR11 sample covers a volume of 13 Gpc3 and is the largest region of the Universe ever surveyed at this density. We measure the correlation function and power spectrum, including density-field reconstruction of the BAO feature. The acoustic features …


Complete Momentum Balance In Ionization Of H₂ By 75-Kev-Proton Impact For Varying Projectile Coherence, Sachin D. Sharma, T. P. Arthanayaka, Ahmad Hasan, B. R. Lamichhane, J. Remolina, Adolph P. Smith, Michael Schulz May 2014

Complete Momentum Balance In Ionization Of H₂ By 75-Kev-Proton Impact For Varying Projectile Coherence, Sachin D. Sharma, T. P. Arthanayaka, Ahmad Hasan, B. R. Lamichhane, J. Remolina, Adolph P. Smith, Michael Schulz

Physics Faculty Research & Creative Works

We report on a kinematically complete experiment on ionization of H2 by proton impact. While a significant impact of the projectile coherence properties on the scattering-angle dependence of double-differential cross sections (DDCSs), reported earlier, is confirmed by the present data, only weak coherence effects are found in the electron and recoil-ion momentum dependence of the DDCSs. This suggests that the phase angle in the interference term is determined primarily by the projectile momentum transfer rather than by the recoil-ion momentum. We therefore cannot rule out the possibility that the interference observed in our data is not primarily due to …


Waveforms For Optimal Sub-Kev High-Order Harmonics With Synthesized Two- Or Three-Colour Laser Fields, Cheng Jin, Guoli Wang, Hui Wei, Anh-Thu Le, C. D. Lin May 2014

Waveforms For Optimal Sub-Kev High-Order Harmonics With Synthesized Two- Or Three-Colour Laser Fields, Cheng Jin, Guoli Wang, Hui Wei, Anh-Thu Le, C. D. Lin

Physics Faculty Research & Creative Works

High-order harmonics extending to the X-ray region generated in a gas medium by intense lasers offer the potential for providing tabletop broadband light sources but so far are limited by their low conversion efficiency. Here we show that harmonics can be enhanced by one to two orders of magnitude without an increase in the total laser power if the laser's waveform is optimized by synthesizing two- or three-colour fields. The harmonics thus generated are also favourably phase-matched so that radiation is efficiently built up in the gas medium. Our results, combined with the emerging intense high-repetition MHz lasers, promise to …


Search For Gravitational Wave Ringdowns From Perturbed Intermediate Mass Black Holes In Ligo-Virgo Data From 2005-2010, J. Aasi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. May 2014

Search For Gravitational Wave Ringdowns From Perturbed Intermediate Mass Black Holes In Ligo-Virgo Data From 2005-2010, J. Aasi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50 ≤ f0/Hz ≤ 2000 and decay timescale 0.0001 ≲ τ/s ≲ 0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50 ≤ M/M⊙ ≤ 450 and …


The Clustering Of Galaxies In The Sdss-Iii Baryon Oscillation Spectroscopic Survey: Testing Gravity With Redshift Space Distortions Using The Power Spectrum Multipoles, Florian Beutler, Shun Saito, For Full List Of Authors, See Publisher's Website. Apr 2014

The Clustering Of Galaxies In The Sdss-Iii Baryon Oscillation Spectroscopic Survey: Testing Gravity With Redshift Space Distortions Using The Power Spectrum Multipoles, Florian Beutler, Shun Saito, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We analyse the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS Data Release 11 (DR11) sample, which consists of 690 827 galaxies in the redshift range 0.43 < z < 0.7 and has a sky coverage of 8498 deg2. We perform our analysis in Fourier space using a power spectrum estimator suggested by Yamamoto et al. We measure the multipole power spectra in a self-consistent manner for the first time in the sense that we provide a proper way to treat the survey window function and the integral constraint, without the commonly used assumption of an isotropic power spectrum and without the need to split the survey into …


Gravitational Waves From Known Pulsars: Results From The Initial Detector Era, J. Aasi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Apr 2014

Gravitational Waves From Known Pulsars: Results From The Initial Detector Era, J. Aasi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and …


Simultaneous Constraints On The Growth Of Structure And Cosmic Expansion From The Multipole Power Spectra Of The Sdss Dr7 Lrg Sample, Akira Oka, Shun Saito, Takahiro Nishimichi, Atsushi Taruya, Kazuhiro Yamamoto Apr 2014

Simultaneous Constraints On The Growth Of Structure And Cosmic Expansion From The Multipole Power Spectra Of The Sdss Dr7 Lrg Sample, Akira Oka, Shun Saito, Takahiro Nishimichi, Atsushi Taruya, Kazuhiro Yamamoto

Physics Faculty Research & Creative Works

The anisotropic galaxy clustering on large scales provides us with a unique opportunity to probe into the gravity theory through the redshift-space distortions (RSDs) and theAlcock-Paczynski effect. Using the multipole power spectra up to hexadecapole (ℓ = 4), of the luminous red galaxy (LRG) sample in the Data Release 7 (DR7) of the Sloan Digital Sky Survey II (SDSS-II), we obtain simultaneous constraints on the linear growth rate f, angular diameter distance DA, and Hubble parameter H at redshift z = 0.3. For this purpose, we first extensively examine the validity of a theoretical model for the non-linear …


Constraints On Cosmic Strings From The Ligo-Virgo Gravitational-Wave Detectors, J. Aasi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Apr 2014

Constraints On Cosmic Strings From The Ligo-Virgo Gravitational-Wave Detectors, J. Aasi, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs …


The Clustering Of Galaxies In The Sdss-Iii Baryon Oscillation Spectroscopic Survey: Including Covariance Matrix Errors, Will J. Percival, Ashley J. Ross, Shun Saito, For Full List Of Authors, See Publisher's Website. Apr 2014

The Clustering Of Galaxies In The Sdss-Iii Baryon Oscillation Spectroscopic Survey: Including Covariance Matrix Errors, Will J. Percival, Ashley J. Ross, Shun Saito, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We present improved methodology for including covariance matrices in the error budget of Baryon Oscillation Spectroscopic Survey (BOSS) galaxy clustering measurements, revisiting Data Release 9 (DR9) analyses, and describing a method that is used in DR10/11 analyses presented in companion papers. The precise analysis method adopted is becoming increasingly important, due to the precision that BOSS can now reach: even using as many as 600 mock catalogues to estimate covariance of two-point clustering measurements can still lead to an increase in the errors of ~20 per cent, depending on how the cosmological parameters of interest are measured. In this paper, …


Young Double Slit Interference Effects At Quantum Level, Zehra Nur Ozer, Hari Chaluvadi, Melike Ulu, Mevlüt Doğan, Bekir Aktaş, Don H. Madison Apr 2014

Young Double Slit Interference Effects At Quantum Level, Zehra Nur Ozer, Hari Chaluvadi, Melike Ulu, Mevlüt Doğan, Bekir Aktaş, Don H. Madison

Physics Faculty Research & Creative Works

The currently accepted model for quantum interference resulting from the emission of electron waves from two scattering centers induced by either light or charged particle impact is analogous to Young's emission of two light waves from two slits. In this work we show that this simple classical wave model is incomplete and that there is a more complicated quantum interference pattern for low energy ionization caused by electron impact.


The Clustering Of Galaxies In The Sdss-Iii Baryon Oscillation Spectroscopic Survey: Signs Of Neutrino Mass In Current Cosmological Data Sets, Florian Beutler, Shun Saito, For Full List Of Authors, See Publisher's Website. Mar 2014

The Clustering Of Galaxies In The Sdss-Iii Baryon Oscillation Spectroscopic Survey: Signs Of Neutrino Mass In Current Cosmological Data Sets, Florian Beutler, Shun Saito, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We investigate the cosmological implications of the latest growth of structure measurement from the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS Data Release 11 with particular focus on the sum of the neutrino masses, Σmv. We examine the robustness of the cosmological constraints from the baryon acoustic oscillation (BAO) scale, the Alcock-Paczynski effect and redshift-space distortions (DV/rs, FAP, fσ8) of Beutler et al., when introducing a neutrino mass in the power spectrum template. We then discuss how the neutrino mass relaxes discrepancies between the cosmic microwave background (CMB) and other low-redshift …


Phonon Density Of States And Anharmonicity Of Uo₂, Judy W. Pang, Aleksandr V. Chernatynskiy, Bennett C. Larson, William J. Buyers, Douglas L. Abernathy, Kenneth J. Mcclellan, Simon R. Phillpot Mar 2014

Phonon Density Of States And Anharmonicity Of Uo₂, Judy W. Pang, Aleksandr V. Chernatynskiy, Bennett C. Larson, William J. Buyers, Douglas L. Abernathy, Kenneth J. Mcclellan, Simon R. Phillpot

Physics Faculty Research & Creative Works

Phonon density of states (PDOS) measurements have been performed on polycrystalline UO2 at 295 and 1200 K using time-of-flight inelastic neutron scattering to investigate the impact of anharmonicity on the vibrational spectra and to benchmark ab initio PDOS simulations performed on this strongly correlated Mott insulator. Time-of-flight PDOS measurements include anharmonic linewidth broadening, inherently, and the factor of ~7 enhancement of the oxygen spectrum relative to the uranium component by the increased neutron sensitivity to the oxygen-dominated optical phonon modes. The first-principles simulations of quasiharmonic PDOS spectra were neutron weighted and anharmonicity was introduced in an approximate way by …


Role Of Electron Saddle Swaps In The Photon Spectra Following Li³⁺ Charge-Exchange Collisions With H*(N = 2), Na(3s), Na*(3p), And Li(2s) Targets, Sebastian Otranto, R. Hoekstra, Ronald E. Olson Feb 2014

Role Of Electron Saddle Swaps In The Photon Spectra Following Li³⁺ Charge-Exchange Collisions With H*(N = 2), Na(3s), Na*(3p), And Li(2s) Targets, Sebastian Otranto, R. Hoekstra, Ronald E. Olson

Physics Faculty Research & Creative Works

The role of electron saddle swaps in collisions of bare Li with metastable hydrogen and alkali-metal atoms is investigated by means of the classical trajectory Monte Carlo method. In particular, we show that oscillations as a function of collision energy in the photon spectra resulting from charge exchange are directly related to the number of potential-saddle crossings that a receding electron can achieve during a given reaction. The range of impact energies spanned is 0.01-50 keV/amu, an area of interest for diagnostic purposes in tokamak nuclear fusion power reactors.


First Searches For Optical Counterparts To Gravitational-Wave Candidate Events, M. Constancio Jr., Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Feb 2014

First Searches For Optical Counterparts To Gravitational-Wave Candidate Events, M. Constancio Jr., Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

During the Laser Interferometer Gravitational-wave Observatory and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers …