Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2015

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1261 - 1290 of 12617

Full-Text Articles in Physical Sciences and Mathematics

Characterization Of Physical, Thermal And Spectroscopic Properties Of Biofield Energy Treated P-Phenylenediamine And P-Toluidine, Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Ragini Singh, Snehasis Jana Nov 2015

Characterization Of Physical, Thermal And Spectroscopic Properties Of Biofield Energy Treated P-Phenylenediamine And P-Toluidine, Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Ragini Singh, Snehasis Jana

Mahendra Kumar Trivedi

Aromatic amines and their derivatives are widely used in the production of dyes, cosmetics, medicines and polymers. However, they pose a threat to the environment due to their hazardous wastes as well as their carcinogenic properties. The objective of the study was to use an alternate strategy i.e. biofield energy treatment and analyse its impact on physicochemical properties of aromatic amine derivatives viz. p-phenylenediamine (PPD) and p-toluidine. For this study, both the samples were taken and divided into two parts. One part was considered as control and another part was subjected to Mr. Trivedi’s biofield treatment. After treatment, both samples …


C–N Bond Rotation And E–Z Isomerism In Some N-Benzyl-N-Methylcarbamoyl Chlorides: A Dft Study, Michael Horwath, Vladimir Benin Nov 2015

C–N Bond Rotation And E–Z Isomerism In Some N-Benzyl-N-Methylcarbamoyl Chlorides: A Dft Study, Michael Horwath, Vladimir Benin

Vladimir Benin

The current report presents the first theoretical study of the restricted CN bond rotation in carbamoyl chlorides. Several N-benzyl-N-methylcarbamoyl chlorides were investigated, with varying pattern of substitution in the aromatic ring. Optimizations and frequency calculations were conducted employing DFT at the B3LYP/6-31+G(d) level of theory. Each of the studied structures exhibits a pair of rotamers (s-Z and s-E), generated upon rotation around the C(O)N bond. The s-E isomer is the global minimum in every case, but the preference for it is usually less than 1 kcal/mol. Two possible transition state structures were identified for the rotamer interconversion: TSsyn and TSanti, …


Preparation And Characterization Of Some Substituted Benzyl N-Nitrosocarbamates Containing An N-2-(Methylthio)Ethyl Or A Bis(2-Aminoethyl)Sulfide Functionality, Satya Venkata, Eric Shamo, Vladimir Benin Nov 2015

Preparation And Characterization Of Some Substituted Benzyl N-Nitrosocarbamates Containing An N-2-(Methylthio)Ethyl Or A Bis(2-Aminoethyl)Sulfide Functionality, Satya Venkata, Eric Shamo, Vladimir Benin

Vladimir Benin

The synthesis and characterization of some substituted benzyl N-nitrosocarbamates with an N-2-(methylthio)ethyl or a bis(2-aminoethyl)sulfide functionality is reported, as a part of a long-term goal to design and prepare novel photolabile structures that could be used as substances for controlled release of alkylating and/or crosslinking agents. The synthesis was accomplished by reaction of benzyl chloroformates with the corresponding amines, resulting in the preparation of carbamates. The latter were subsequently nitrosated, utilizing two different N-nitrosation methods, to yield the target structures.


The Tetrafluoroborate Salt Of 4-Methoxybenzyl N-2-(Dimethylamino)Ethyl-N-Nitrosocarbamate: Synthesis, Crystal Structure And Dft Calculations, Helene Hedian, Vladimir Benin Nov 2015

The Tetrafluoroborate Salt Of 4-Methoxybenzyl N-2-(Dimethylamino)Ethyl-N-Nitrosocarbamate: Synthesis, Crystal Structure And Dft Calculations, Helene Hedian, Vladimir Benin

Vladimir Benin

The tetrafluoroborate salt of 4-methoxybenzyl N-2-(dimethylamino)ethyl-N-nitrosocarbamate was prepared in two steps, via the corresponding carbamate. Its crystal structure is monoclinic, space group P21/c. The unit cell dimensions are: a = 19.499(8) Å, b = 5.877(3) Å, c = 15.757(7) Å, α = 90°, β = 110.019(7)°, γ = 90°, V = 1696.5(12) Å3, Z = 4. The structure exhibits an unexpected, pseudo-gauche conformation with respect to the C2–C3 bond, due to a stabilizing hydrogen bond between the carbonyl oxygen (O1) and the hydrogen atom at the trialkylammonium center (H3n), with a distance between them of 2.37 Å. DFT calculations on …


A Sodium Salt Of The Dimer Of Boronoterephthalic Acid Anhydride, Scott Simmons, Albert Fratini, Vladimir Benin Nov 2015

A Sodium Salt Of The Dimer Of Boronoterephthalic Acid Anhydride, Scott Simmons, Albert Fratini, Vladimir Benin

Vladimir Benin

The title compound, sodium bis­(6-carb­oxy-1-hy­droxy-3-oxo-1,3-dihydro-2,1-benzoxaborol-1-yl)oxidanium, Na+·C16H15B2O13-, was prepared in two steps from 2-bromo-p-xylene. Its crystal structure was determined at 140 K and has triclinic (P) symmetry. The compound presents a unique structural motif, including two units of the cyclic anhydride of boronoterephthalic acid, joined by a protonated, and thereby trivalent, oxonium center. Association in the crystal is realized by complementary hydrogen bonding of the carboxyl groups, as well as by coordination of the sodium cations to the oxygen centers on the five-membered rings.


Secondary N-Nitrosocarbamate Anions: Structure And Alkylation Reactions. A Dft Study, Vladimir Benin Nov 2015

Secondary N-Nitrosocarbamate Anions: Structure And Alkylation Reactions. A Dft Study, Vladimir Benin

Vladimir Benin

The current article reports theoretical studies (DFT: B3LYP/6-31+G(d)) on the structure and alkylation reactions of the anions of some secondary N-nitrosocarbamates, a class of ambident nucleophiles whose chemistry has been little explored. Several anions (1–4), with an increasing size of the carbamate alkyl (aryl) group were investigated, in an attempt to establish the influence of the size of that group on the thermal stability and regioselectivity of alkylation of the title anions. The conclusion is that thermal stability and the mode of reaction are affected significantly only in the presence of very large and branched carbamate groups. The thermal decomposition …


Preparation Of Phosphonoterephthalic Acids Via Palladium-Catalyzed Coupling Of Aromatic Iodoesters, Nathaniel Ivan, Vladimir Benin, Alexander Morgan Nov 2015

Preparation Of Phosphonoterephthalic Acids Via Palladium-Catalyzed Coupling Of Aromatic Iodoesters, Nathaniel Ivan, Vladimir Benin, Alexander Morgan

Vladimir Benin

The current article reports in detail the preparation of two phosphonoterephthalic acids: 2-phosphonoterephthalic acid (1) and 2,5-diphosphonoterephthalic acid (2). Efficient, scalable syntheses have been developed for both compounds based on Pd-catalyzed coupling reactions of iodinated terephthalate esters. Phosphonoterephthalic acids are potentially useful as flame-retardant additives or as monomers for the construction of acid-pendant polymer chains.


Preparation Of Some Substituted Terephthalic Acids, Susanna Branion, Vladimir Benin Nov 2015

Preparation Of Some Substituted Terephthalic Acids, Susanna Branion, Vladimir Benin

Vladimir Benin

We report in detail the preparation of two substituted terephthalic acids: 2‐sulfomethylterephthalic acid (1) and 2‐phosphonoterephthalic acid (2). Efficient, short syntheses have been developed for both compounds. They are potentially useful monomers for construction of acid‐pendant polymer chains.


Theoretical Investigation Of A Reported Antibiotic From The 'Miracle Tree' Moringa Oleifera, Michael Horwath, Vladimir Benin Nov 2015

Theoretical Investigation Of A Reported Antibiotic From The 'Miracle Tree' Moringa Oleifera, Michael Horwath, Vladimir Benin

Vladimir Benin

Moringa oleifera, sometimes called the “Miracle Tree,” has received international attention for its potential to improve health in impoverished tropical areas. In addition to high vitamin content in the leaves and pods, the tree contains compounds with antioxidant and antibacterial properties. This study focused on the theoretical investigation of the suggested structure of one antibacterial compound, “pterygospermin,” whose existence was proposed after some studies of the roots of M. oleifera. The structure of pterygospermin was first proposed by a research group working in the 1950s, but later studies have not found evidence of this compound and have instead attributed the …


Synthesis And Flammability Testing Of Epoxy Functionalized Phosphorous-Based Flame Retardants, Vladimir Benin, Xuemei Cui, Alexander Morgan, Karl Seiwert Nov 2015

Synthesis And Flammability Testing Of Epoxy Functionalized Phosphorous-Based Flame Retardants, Vladimir Benin, Xuemei Cui, Alexander Morgan, Karl Seiwert

Vladimir Benin

Several potential new phosphorus-containing flame retardant molecules were evaluated for heat release reduction potential by incorporation of the molecules into a polyurethane, generated from methylene diphenyl diisocyanate and 1,3-propane diol. The heat release reduction potential of these substances was evaluated using the pyrolysis combustion flow calorimeter (PCFC). The polyurethanes were prepared in the presence of the potential flame retardants via solvent mixing and copolymerization methods to qualitatively evaluate their potential reactivity into the polyurethane prior to heat release testing. The functionality of the flame retardants was epoxide based that would potentially react with the diol during polyurethane synthesis. Flammability testing …


Synthesis And Flame Retardant Testing Of New Boronated And Phosphonated Aromatic Compounds, Vladimir Benin, Sravanthi Durganala, Alexander Morgan Nov 2015

Synthesis And Flame Retardant Testing Of New Boronated And Phosphonated Aromatic Compounds, Vladimir Benin, Sravanthi Durganala, Alexander Morgan

Vladimir Benin

The present report describes the preparation and use of some dimethyl terephthalate derivatives in transition metal-catalyzed coupling reactions to produce new reactive flame retardants. Dimethyl iodoterephthalate and dimethyl 2,5-diiodoterephthalate were successfully employed in the preparation of phosphonic and boronic esters and acids. The latter were tested for heat release with a microcombustion calorimeter (ASTM D7309) to determine the potential for heat release reduction of these flame retardant molecules. The results showed that the addition of boronic or phosphonic acids greatly lowered the heat release, due to a condensed phase (char formation) mechanism. Adding ester groups to the boronic acids or …


Heat Release Of Polyurethanes Containing Potential Flame Retardants Based On Boron And Phosphorus Chemistries, Vladimir Benin, Bastien Gardelle, Alexander Morgan Nov 2015

Heat Release Of Polyurethanes Containing Potential Flame Retardants Based On Boron And Phosphorus Chemistries, Vladimir Benin, Bastien Gardelle, Alexander Morgan

Vladimir Benin

Using a polyurethane of methylene diphenyl isocyanate and 1,3-propane diol, several new non-halogenated aromatic boron and phosphorus flame retardants were evaluated for heat release reduction potential using the pyrolysis combustion flow calorimeter (PCFC). The polyurethanes were prepared in the presence of the potential flame retardants via solvent mixing and copolymerization methods, and were then analyzed via spectroscopic methods to determine if the flame retardant was still present in the final product. PCFC testing on the resulting products showed that the flame retardant molecule can have different effects on heat release depending upon how it is mixed into the polyurethane. Some …


Preparation, Characterization And Dft Studies Of Some New N-Nitrosocarbamates And N-Nitrosoureas, Ragavan Narayanan, Helene Hedian, Eric Shamo, Vladimir Benin Nov 2015

Preparation, Characterization And Dft Studies Of Some New N-Nitrosocarbamates And N-Nitrosoureas, Ragavan Narayanan, Helene Hedian, Eric Shamo, Vladimir Benin

Vladimir Benin

We are presenting the preparation, characterization and density functional theory (DFT) studies {B3LYP/6-31+G(d)) of several reiated classes of N-nitrosocarbamates and N-nitrosoureas. The iong-range goal is the design and preparation of compounds, which would undergo photochemical or hydrolytic decomposition, to yield stabilized cyclic cations that can serve as alkylating agents at various nucleophilic centers, including DNA bases.


Synthesis, Structural Studies And Desilylation Reactions Of Some N-2-(Trimethylsilyl)Ethyl-N-Nitrosocarbamates, Arpitha Thakkalapally, Vladimir Benin Nov 2015

Synthesis, Structural Studies And Desilylation Reactions Of Some N-2-(Trimethylsilyl)Ethyl-N-Nitrosocarbamates, Arpitha Thakkalapally, Vladimir Benin

Vladimir Benin

The present report describes the preparation and characterization of several N-2-(trimethylsilyl)ethyl-N-nitrosocarbamates, designed as precursors to thermally unstable secondary N-nitrosocarbamate anions via fluoride-assisted cleavage. X-ray structural studies demonstrate that the core N-nitrosocarbamate moiety has a nearly planar geometry, with an s-E orientation at the N–N bond. DFT calculations (B3LYP/6-31+G(d)) reproduce accurately the structural features of the title compounds and detailed conformational analysis at the same level of theory addresses the long-standing issue of preferred geometries for three classes of related structures: N-nitrosocarbamates, N-nitrosoureas and N-nitrosoamides. Desilylation studies demonstrate that both the …


Reactions Of Methyl Perfluoroalkyl Ethers With Isopropyl Alcohol: Experimental And Theoretical Studies, Howard Knachel, Vladimir Benin, Chadwick Barklay, Janine C. Birkbeck, Billy D. Faubion, William E. Moddeman Nov 2015

Reactions Of Methyl Perfluoroalkyl Ethers With Isopropyl Alcohol: Experimental And Theoretical Studies, Howard Knachel, Vladimir Benin, Chadwick Barklay, Janine C. Birkbeck, Billy D. Faubion, William E. Moddeman

Vladimir Benin

The reaction of an isomeric mixture of the methyl perfluoroalkyl ether, C4F9OCH3 (Novec-7100), in the presence of isopropyl alcohol (IPA) and/or water has been studied by measuring the rate of product formation using an ion-selective electrode (ISE) for fluoride ion, Karl Fisher coulometric titrations for water, and 1H and 19F NMR spectroscopy for product identification and rate studies. The results showed the methyl perfluoroalkyl ether to be very stable with products forming at the rate of ∼1 ppm per year at a laboratory temperature of 20 °C. Measurements over the temperature range of 6° to 100 °C were made on …


Preparation Of Halogenated Derivatives Of Thiazolo[5,4-D]Thiazole Via Direct Electrophilic Aromatic Substitution, Vladimir Benin, Alan T. Yeates, Douglas Dudis Nov 2015

Preparation Of Halogenated Derivatives Of Thiazolo[5,4-D]Thiazole Via Direct Electrophilic Aromatic Substitution, Vladimir Benin, Alan T. Yeates, Douglas Dudis

Vladimir Benin

Chlorination and bromination reactions of thiazolo[5,4-d]thiazole led to the generation of its mono- and dihalogenated derivatives. These are the first instances of successful direct electrophilic aromatic substitution in the thiazolo[5,4-d]thiazole ring system. X-ray analysis demonstrates that both 2-bromothiazolo[5,4-d]-thiazole and 2,5-dibromothiazolo[5,4-d]thiazole are planar structures, with strongly manifested π-stacking in the solid state. Theoretical analysis of the pyridine-catalyzed halogenation (MP2/6-31+G(d) and B3LYP/6-31+G(d)calculations) reveals that introduction of one halogen actually leads to a slightly enhanced reactivity towards further halogenation. Several halogenation mechanisms have been investigated: 1) The direct C-halogenation with N-halopyridine as electrophile; 2) C-halogenation viaintermediate N-halogenation, and 3) C-halogenation following an addition …


Structure, Theoretical Studies And Coupling Reactions Of Some New Cyclic Boronic Esters, Andrew Kuttler, Sravanthi Durganala, Albert Fratini, Alexander Morgan, Vladimir Benin Nov 2015

Structure, Theoretical Studies And Coupling Reactions Of Some New Cyclic Boronic Esters, Andrew Kuttler, Sravanthi Durganala, Albert Fratini, Alexander Morgan, Vladimir Benin

Vladimir Benin

The present report describes the X-ray structural and theoretical studies of some new pinacolboronate esters, and it also outlines the use of the target structures in Suzuki coupling reactions to produce new aromatic or heteroaromatic esters and amides. X-ray structural analysis of the studied compounds revealed that the pinacolborane ring's position with respect to the benzene ring varies, depending on the particular environment. An ortho-positioned carboxylic ester (methyl ester) causes a nearly perpendicular orientation of the pinacolborane unit with respect to the benzene ring, whereas an ortho-positioned amide (N,N-dimethylamide) causes the pinacolborane unit to orient itself nearly coplanar. A plausible …


Visualising Dna: Footprinting And 1-2d Gels, Adam Urbach, Michael Waring Nov 2015

Visualising Dna: Footprinting And 1-2d Gels, Adam Urbach, Michael Waring

Adam R Urbach

The study of molecular recognition of DNA by natural and synthetic ligands has made enormous progress due in large part to the discovery and development of methods for separating DNA fragments by gel electrophoresis in one and two dimensions, and for characterizing DNA–ligand complexes by footprinting techniques.


Scope Of Amino Acid Recognition By Cucurbit[8]Uril, Preetika Rajgariah, Adam Urbach Nov 2015

Scope Of Amino Acid Recognition By Cucurbit[8]Uril, Preetika Rajgariah, Adam Urbach

Adam R Urbach

This paper describes the molecular recognition of amino acids by cucurbit[8]uril (Q8) and by the 1:1 complex between Q8 and methyl viologen (MV) in purely aqueous solution. These hosts are known to bind aromatic peptides with high affinity and sequence specificity, but prior work has focused on only a small subset of amino acids. In an effort to elucidate the scope and limitations of amino acid recognition by Q8 and Q8•MV, a comprehensive examination of the 20 genetically encoded amino acids was carried out by 1H NMR spectroscopy and isothermal titration calorimetry. We find that both Q8 and Q8•MV …


Nanomolar Binding Of Peptides Containing Noncanonical Amino Acids By A Synthetic Receptor, Leigh Logsdon, Christopher Schardon, Vijayakumar Ramalingam, Sharon Kwee, Adam Urbach Nov 2015

Nanomolar Binding Of Peptides Containing Noncanonical Amino Acids By A Synthetic Receptor, Leigh Logsdon, Christopher Schardon, Vijayakumar Ramalingam, Sharon Kwee, Adam Urbach

Adam R Urbach

This paper describes the molecular recognition of phenylalanine derivatives and their peptides by the synthetic receptor cucurbit[7]uril (Q7). The 4-tert-butyl and 4-aminomethyl derivatives of phenylalanine (tBuPhe and AMPhe) were identified from a screen to have 20–30-fold higher affinity than phenylalanine for Q7. Placement of these residues at the N-terminus of model tripeptides (X-Gly-Gly), resulted in no change in affinity for tBuPhe-Gly-Gly, but a remarkable 500-fold increase in affinity for AMPhe-Gly-Gly, which bound to Q7 with an equilibrium dissociation constant (Kd) value of 0.95 nM in neutral phosphate buffer. Structure–activity studies revealed that three functional groups work in a positively cooperative …


Determining Protease Substrate Selectivity And Inhibition By Label-Free Supramolecular Tandem Enzyme Assays, Garima Ghale, Vijayakumar Ramalingam, Adam R. Urbach, Werner M. Nau Nov 2015

Determining Protease Substrate Selectivity And Inhibition By Label-Free Supramolecular Tandem Enzyme Assays, Garima Ghale, Vijayakumar Ramalingam, Adam R. Urbach, Werner M. Nau

Adam R Urbach

An analytical method has been developed for the continuous monitoring of protease activity on unlabeled peptides in real time by fluorescence spectroscopy. The assay is enabled by a reporter pair comprising the macrocycle cucurbit[7]uril (CB7) and the fluorescent dye acridine orange (AO). CB7 functions by selectively recognizing N-terminal phenylalanine residues as they are produced during the enzymatic cleavage of enkephalin-type peptides by the metalloendopeptidase thermolysin. The substrate peptides (e.g., Thr-Gly-Ala-Phe-Met-NH2) bind to CB7 with moderately high affinity (K ≈ 104 M–1), while their cleavage products (e.g., Phe-Met-NH2) bind very tightly (K …


Dna Complexes: Durable Binders, Adam Urbach Nov 2015

Dna Complexes: Durable Binders, Adam Urbach

Adam R Urbach

The ability to program molecules to bind to specific sequences of DNA with high fidelity and stability is an important goal of chemical biology. Such molecules can compete with transcription-factor proteins and thus modulate the transcription of genes. They are therefore promising for both elucidating the complex regulation of mammalian gene expression, and developing pharmaceuticals and medical diagnostics targeted to genetic abberations. Writing in Nature Chemistry, Brent Iverson and co-workers have now described the excellent sequence specificity and unusual binding kinetics of a stable DNA–ligand complex, which exhibits a half-life of 16 days.


Charge-Mediated Recognition Of N-Terminal Tryptophan In Aqueous Solution By A Synthetic Host, Meghan Bush, Nicole Bouley, Adam Urbach Nov 2015

Charge-Mediated Recognition Of N-Terminal Tryptophan In Aqueous Solution By A Synthetic Host, Meghan Bush, Nicole Bouley, Adam Urbach

Adam R Urbach

The molecular recognition of peptides and proteins in aqueous solution by designed molecules remains an elusive goal with broad implications for basic biochemical research and for sensors and separations technologies. This paper describes the recognition of N-terminal tryptophan in aqueous solution by the synthetic host cucurbit[8]uril (Q8). Q8 is known to form 1:1:1 heteroternary complexes with methyl viologen (MV) and a second aromatic guest. Here, the complexes of Q8·MV with (i) the four natural aromatic α-amino acids, (ii) four singly charged tryptophan derivatives, and (iii) four tryptophan-containing tripeptides were characterized by isothermal titration calorimetry, mass spectrometry, and UV−visible, fluorescence, and …


Molecular Recognition Of Insulin By A Synthetic Receptor, Jordan Chinai, Alexander Taylor, Lisa Ryno, Nicholas Hargreaves, Christopher Morris, P Hart, Adam Urbach Nov 2015

Molecular Recognition Of Insulin By A Synthetic Receptor, Jordan Chinai, Alexander Taylor, Lisa Ryno, Nicholas Hargreaves, Christopher Morris, P Hart, Adam Urbach

Adam R Urbach

The discovery of molecules that bind tightly and selectively to desired proteins continues to drive innovation at the interface of chemistry and biology. This paper describes the binding of human insulin by the synthetic receptor cucurbit[7]uril (Q7) in vitro. Isothermal titration calorimetry and fluorescence spectroscopy experiments show that Q7 binds to insulin with an equilibrium association constant of 1.5 × 106 M−1 and with 50−100-fold selectivity versus proteins that are much larger but lack an N-terminal aromatic residue, and with >1000-fold selectivity versus an insulin variant lacking the N-terminal phenylalanine (Phe) residue. The crystal structure of the Q7·insulin complex shows …


A Cucurbit[8]Uril Sponge, Vijayakumar Ramalingam, Sharon Kwee, Lisa Ryno, Adam Urbach Nov 2015

A Cucurbit[8]Uril Sponge, Vijayakumar Ramalingam, Sharon Kwee, Lisa Ryno, Adam Urbach

Adam R Urbach

This paper describes a convenient approach to quantitative removal of the synthetic host cucurbit[8]uril (Q8) from aqueous mixtures using a sepharose resin coated in memantine groups to selectively sequester Q8 in the presence of competing hosts and guests. The “Q8 sponge” can separate Q8 from Q6 and reverse the Q8-mediated dimerization of peptides.


Sequence-Specific, Nanomolar Peptide Binding Via Cucurbit[8]Uril-Induced Folding And Inclusion Of Neighboring Side Chains, Lauren C. Smith, David G. Leach, Brittney E. Blaylock, Omar A. Ali, Adam R. Urbach Nov 2015

Sequence-Specific, Nanomolar Peptide Binding Via Cucurbit[8]Uril-Induced Folding And Inclusion Of Neighboring Side Chains, Lauren C. Smith, David G. Leach, Brittney E. Blaylock, Omar A. Ali, Adam R. Urbach

Adam R Urbach

This paper describes the molecular recognition of the tripeptide Tyr-Leu-Ala by the synthetic receptor cucurbit[8]uril (Q8) in aqueous buffer with nanomolar affinity and exceptional specificity. This combination of characteristics, which also applies to antibodies, is desirable for applications in biochemistry and biotechnology but has eluded supramolecular chemists for decades. Building on prior knowledge that Q8 binds to peptides with N-terminal aromatic residues, a library screen of 105 peptides was designed to test the effects of residues adjacent to N-terminal Trp, Phe, or Tyr. The screen used tetramethylbenzobis(imidazolium) (MBBI) as a fluorescent indicator and resulted in the unexpected discovery that MBBI …


Blind Prediction Of Host-Guest Binding Affinities: A New Sampl3 Challenge, Hari S. Muddana, C Daniel Varnado, Christopher W. Bielawski, Adam R. Urbach, Lyle Isaacs, Matthew T. Geballe, Michael K. Gilson Nov 2015

Blind Prediction Of Host-Guest Binding Affinities: A New Sampl3 Challenge, Hari S. Muddana, C Daniel Varnado, Christopher W. Bielawski, Adam R. Urbach, Lyle Isaacs, Matthew T. Geballe, Michael K. Gilson

Adam R Urbach

The computational prediction of protein–ligand binding affinities is of central interest in early-stage drug-discovery, and there is a widely recognized need for improved methods. Low molecular weight receptors and their ligands—i.e., host–guest systems—represent valuable test-beds for such affinity prediction methods, because their small size makes for fast calculations and relatively facile numerical convergence. The SAMPL3 community exercise included the first ever blind prediction challenge for host–guest binding affinities, through the incorporation of 11 new host–guest complexes. Ten participating research groups addressed this challenge with a variety of approaches. Statistical assessment indicates that, although most methods performed well at predicting some …


Multivalent Recognition Of Peptides By Modular Self-Assembled Receptors, Joseph Reczek, Aimee Kennedy, Brian Halbert, Adam Urbach Nov 2015

Multivalent Recognition Of Peptides By Modular Self-Assembled Receptors, Joseph Reczek, Aimee Kennedy, Brian Halbert, Adam Urbach

Adam R Urbach

Developing nontraditional approaches to the synthesis and characterization of multivalent compounds is critical to our efforts to study and interface with biological systems and to build new noncovalent materials. This paper demonstrates a biomimetic approach to the construction of discrete, modular, multivalent receptors via molecular self-assembly in aqueous solution. Scaffolds presenting 1−3 viologen groups recruit a respective 1−3 copies of the synthetic host, cucurbit[8]uril, in a noncooperative manner and with a consistent equilibrium association constant (Ka) value of 2 × 106 M−1 per binding site. The assembled mono-, di-, and trivalent receptors bind to their cognate target peptides containing 1−3 …


Solid-Phase Synthesis Of Peptide−Viologen Conjugates, Joseph Reczek, Elisa Rebolini, Adam Urbach Nov 2015

Solid-Phase Synthesis Of Peptide−Viologen Conjugates, Joseph Reczek, Elisa Rebolini, Adam Urbach

Adam R Urbach

This paper presents a robust method for the conjugation of viologens to peptides using an amide coupling strategy that is compatible with standard Fmoc solid-phase peptide synthesis. Methodology is presented for monitoring the milligram scale process quantitatively by UV spectroscopy. This chemistry enables the synthesis of a broad range of asymmetric viologens in high yield at room temperature and is compatible with a wide range of functional groups, including amine, guanidinyl, thiol, carboxylic acid, phenol, and indole.


Molecular Recognition Of Amino Acids, Peptides, And Proteins By Cucurbit[N]Uril Receptors, Adam R. Urbach, Vijayakumar Ramalingam Nov 2015

Molecular Recognition Of Amino Acids, Peptides, And Proteins By Cucurbit[N]Uril Receptors, Adam R. Urbach, Vijayakumar Ramalingam

Adam R Urbach

At the forefront of the endeavor to understand and manipulate living systems is the design and study of receptors that bind with high affinity and selectivity to specific amino acids, peptides, and proteins. Cucurbit[n]urils are among the most promising class of synthetic receptors for these targets due to their high affinities and selectivities in aqueous media and to the unique combination of electrostatic and hydrophobic interactions that govern binding. The fundamental supramolecular chemistry in this area has been explored in depth, and novel, useful applications are beginning to emerge.