Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 301 - 330 of 1068

Full-Text Articles in Physical Sciences and Mathematics

The Drag Coefficient Of Varying Dimple Patterns, James M. Seeley, Michael S. Crosser May 2018

The Drag Coefficient Of Varying Dimple Patterns, James M. Seeley, Michael S. Crosser

Senior Theses

There are many golf balls on the market today with varying dimple sizes, shapes, and distribution. These proprietary differences are all designed to reduce drag on the balls during flight, allowing golfers to hit the ball farther distances. There are limited published studies comparing how varying the dimples affects the reduction of drag. An experiment was developed in which golf balls were pulled through a water tank to measure the drag force acting on each ball. The water was chosen to allow for testing at slower velocities than the typical necessary speeds to cause turbulence for balls traveling in air. …


The Computational Study Of Fly Swarms & Complexity, Austin Bebee May 2018

The Computational Study Of Fly Swarms & Complexity, Austin Bebee

Senior Theses

A system is considered complex if it is composed of individual parts that abide by their own set of rules, while the system, as a whole, will produce non-deterministic properties. This prevents the behavior of such systems from being accurately predicted. The motivation for studying complexity spurs from the fact that it is a fundamental aspect of innumerable systems. Among complex systems, fly swarms are relatively simple, but even so they are still not well understood. In this research, several computational models were developed to assist with the understanding of fly swarms. These models were primarily analyzed by using the …


Experimentally Investigating Water Aerosol Formation Via Alpha Radiation In A Humid Nitrogen Atmosphere, Megan Payne May 2018

Experimentally Investigating Water Aerosol Formation Via Alpha Radiation In A Humid Nitrogen Atmosphere, Megan Payne

Honors Theses

This project aims to verify the formation of water aerosols induced by an ionizing radiation source in a Nitrogen atmosphere with various levels of humidity. This work is part of an effort to characterize the overall signature of ionizing radiation in Earth’s typical atmosphere. By signature, it is meant all the chemical reactions and physical processes that take place between Earth’s atmosphere and the ionizing radiation. This signature can potentially be used to identify a radiation source out in the field. The identification of a radiation source could potentially be used in a variety of defense applications. To characterize this …


Cosmological Distance Measurements With Rotse Supernovae Iip And Observational Systematics On Desi Emission Line Galaxy Clustering, Govinda Dhungana May 2018

Cosmological Distance Measurements With Rotse Supernovae Iip And Observational Systematics On Desi Emission Line Galaxy Clustering, Govinda Dhungana

Physics Theses and Dissertations

Both Supernovae (SNe) and Baryon Acoustic Oscillations (BAO) surveys emerged as complementary probes of the expansion history of the universe in the last few decades. SNe Ia cosmology has reached the systematic limits in the optical surveys. The most frequently occuring SNe Type IIP are emerging as equally rich distance probes for the next generation larger surveys. In this thesis, I highlight the astrophysical observables of these events in the context of ROTSE III SN survey and using the ROTSE SNe IIP sample, I present calibration in the framework of expanding photosphere method (EPM) to use them as cosmological distance …


Efficient Quantum Approximation : Examining The Efficiency Of Select Universal Gate Sets In Approximating 1-Qubit Quantum Gates., Brent A. Mode May 2018

Efficient Quantum Approximation : Examining The Efficiency Of Select Universal Gate Sets In Approximating 1-Qubit Quantum Gates., Brent A. Mode

College of Arts & Sciences Senior Honors Theses

Quantum computation is of current ubiquitous interest in physics, computer science, and the public interest. In the not-so-distant future, quantum computers will be relatively common pieces of research equipment. Eventually, one can expect an actively quantum computer to be a common feature of life. In this work, I study the approximation efficiency of several common universal quantum gate sets at short sequence lengths using an implementation of the Solovay-Kitaev algorithm. I begin by developing from almost nothing the relevant formal mathematics to rigorously describe what one means by the terms universal gate set and covering efficiency. I then describe some …


Echoes Of The Past: The Effect Of Background Experience On Far Transfer, Graham H. Hummel-Hall May 2018

Echoes Of The Past: The Effect Of Background Experience On Far Transfer, Graham H. Hummel-Hall

Electronic Theses and Dissertations

Far transfer is the application of knowledge learned in one setting to a problem in a very different setting. This multi-method study looked at far transfer in humans and whether it could be facilitated, inhibited, or remain unaffected by the number of courses or years a student at a university spent learning about the subject matter of the knowledge being transferred. Through quantitative and qualitative analysis of pretest and post-test data from an introductory undergraduate earth science course, I found that students with more physical science background experience more frequently engaged in successful and accurate transfer of physics information to …


Measuring The Double Layer Capacitance Of Electrolytes With Varied Concentrations, Geoffrey Rath May 2018

Measuring The Double Layer Capacitance Of Electrolytes With Varied Concentrations, Geoffrey Rath

Senior Theses

When electric potentials are applied from an electrolytic fluid to a metal, a double layer capacitor, Cdl, develops at the interface. The layer directly at the interface is called the Stern layer and has a thickness equal to roughly the size of the ions in the fluid. The next layer, the diffuse layer, arises from the gathering of like charges in the Stern layer. This layer is the distance needed for ionic charges to return to equilibrium. This distance, called the Debye length, λ, depends on the square root of the electrolyte concentration. To study the properties of …


The Effects Of Surface Pace In Baseball, Jason Farlow May 2018

The Effects Of Surface Pace In Baseball, Jason Farlow

Senior Theses

A baseball travels across different surfaces at different paces. The goal of this experiment is to find a percentage difference in speeds the ball will reflect off a given surface. The energy lost on the turf surface was far more significant than on dirt surface as the turf lost an average of 26% of its energy as compared to just 16% of the energy on dirt. In the Northwest conference, teams play on four turf-based infields and five dirt-based infields. The results of this study suggest that kinetic friction forces are more significant in reducing ball rebound speed than in …


The Pope's Rhinoceros And Quantum Mechanics, Michael Gulas Apr 2018

The Pope's Rhinoceros And Quantum Mechanics, Michael Gulas

Honors Projects

In this project, I unravel various mathematical milestones and relate them to the human experience. I show and explain the solution to the Tautochrone, a popular variation on the Brachistochrone, which details a major battle between Leibniz and Newton for the title of inventor of Calculus. One way to solve the Tautochrone is using Laplace Transforms; in this project I expound on common functions that get transformed and how those can be used to solve the Tautochrone. I then connect the solution of the Tautochrone to clock making. From this understanding of clocks, I examine mankind’s understanding of time and …


In Pursuit Of A Good Night’S Rest. Steps Towards Improving Electroencephalogram (Eeg) Accessibility And Affordability, Niyant Vora Apr 2018

In Pursuit Of A Good Night’S Rest. Steps Towards Improving Electroencephalogram (Eeg) Accessibility And Affordability, Niyant Vora

John Wesley Powell Student Research Conference

The Electroencephalogram (EEG), which is used to effectively record brain waves, has long been a key pillar of sleep research. However, sleep research has an important problem–the natural environment in which people sleep (their bedrooms), is not where sleep research is conducted. Several companies have released EEG headsets to try and address this problem, however, there are still many obstacles to home use. Such headsets are too expensive to be used by everyone and are still not effective enough to be utilized by physicians performing sleep studies. The goal of our research is to find affordable and innovative ways to …


Thorium And Molten Salt Reactors: Essential Questions For Classroom Discussions, Gregory A. Dilisi, Allison Hirsch*, Meredith Murray*, Richard Rarick Apr 2018

Thorium And Molten Salt Reactors: Essential Questions For Classroom Discussions, Gregory A. Dilisi, Allison Hirsch*, Meredith Murray*, Richard Rarick

2018 Faculty Bibliography

No abstract provided.


College Of Science And Mathematics Newsletter, Spring 2018, College Of Science And Mathematics, Wright State University Apr 2018

College Of Science And Mathematics Newsletter, Spring 2018, College Of Science And Mathematics, Wright State University

College of Science and Mathematics Newsletters

This 3 page newsletter discusses various happenings within the College of Science and Mathematics. It begins with a letter from the dean, and continues on with news, events, alumni news, and other community news.


Ask An Acoustician: Whitney Coyle, Whitney Coyle Apr 2018

Ask An Acoustician: Whitney Coyle, Whitney Coyle

Faculty Publications

Meet Whitney Coyle Welcome to the second installment of our new Sound Perspectives series “Ask an Acoustician.” This article highlights Whitney Coyle, an assistant professor at Rollins College, Winter Park, Florida (rollins.edu). Whitney represents the musical acoustics field. She received her BS from Murray State University, Murray, Kentucky, in the fields of music and mathematics. She then went on to Pennsylvania State University, University Park, for her MS and PhD in acoustics. Whitney has a strong association with the Acoustical Society of American (ASA), including serving on the Student Council Committee from 2011 to 2015. She received awards for the …


Nv Center Detection Of Electric Fields And Low-Intensity Light, Nicholas Harmon, Michael Flatte Mar 2018

Nv Center Detection Of Electric Fields And Low-Intensity Light, Nicholas Harmon, Michael Flatte

Faculty Works

Nitrogen vacancy (NV) center spins in diamond are attractive candidates for quantum information processing and sensitive, nanoscale magnetometers due to their long spin coherence times under ambient conditions [1]. The ground state of the NV spin is also sensitive to electric fields [2]. We present a theory of quantum detection using positive operator valued measurements (POVMs) wherein the presence of an electric field is determined by spin-dependent fluorescence of an NV center. The predicted sensitivity to small electric fields can also be used for photon detection. Photons incident upon a chromophore near the diamond interface may induce a charge polarization …


Double K-S(0) Photoproduction Off The Proton At Clas, S. Chandavar, J. T. Goetz, K. Hicks, D. Keller, M. C. Kunkel, M. Paolone, D. P. Weygand, Gerard P. Gilfoyle, Et. Al. Feb 2018

Double K-S(0) Photoproduction Off The Proton At Clas, S. Chandavar, J. T. Goetz, K. Hicks, D. Keller, M. C. Kunkel, M. Paolone, D. P. Weygand, Gerard P. Gilfoyle, Et. Al.

Physics Faculty Publications

The f0 (1500) meson resonance is one of several contenders to have significant mixing with the lightest glueball. This resonance is well established from several previous experiments. Here we present the first photoproduction data for the f0 (1500) via decay into the K-S(0) K-S(0) channel using the CLAS detector. The reaction γp -> fJp -> K-S(0) K-S(0) p, where J = 0,2, was measured with photon energies from 2.7-5.1 GeV. A clear peak is seen at 1500 MeV in the background subtracted invariant mass spectra of the two kaons. This is enhanced if the measured …


Hill Functions For Stochastic Gene Regulatory Networks From Master Equations With Split Nodes And Time-Scale Separation, Ovidiu Lipan, Cameron Ferwerda Feb 2018

Hill Functions For Stochastic Gene Regulatory Networks From Master Equations With Split Nodes And Time-Scale Separation, Ovidiu Lipan, Cameron Ferwerda

Physics Faculty Publications

The deterministic Hill function depends only on the average values of molecule numbers. To account for the fluctuations in the molecule numbers, the argument of the Hill function needs to contain the means, the standard deviations, and the correlations. Here we present a method that allows for stochastic Hill functions to be constructed from the dynamical evolution of stochastic biocircuits with specific topologies. These stochastic Hill functions are presented in a closed analytical form so that they can be easily incorporated in models for large genetic regulatory networks. Using a repressive biocircuit as an example, we show by Monte Carlo …


Measurement Of The Q(2) Dependence Of The Deuteron Spin Structure Function G(1) And Its Moments At Low Q(2) With Clas, K. P. Adhikari, A. Deur, L. El Fassi, H. Kang, S. E. Kuhn, M. Ripani, K. Slifer, Gerard P. Gilfoyle, Et. Al. Feb 2018

Measurement Of The Q(2) Dependence Of The Deuteron Spin Structure Function G(1) And Its Moments At Low Q(2) With Clas, K. P. Adhikari, A. Deur, L. El Fassi, H. Kang, S. E. Kuhn, M. Ripani, K. Slifer, Gerard P. Gilfoyle, Et. Al.

Physics Faculty Publications

We measured the g1 spin structure function of the deuteron at low Q2, where QCD can be approximated with chiral perturbation theory (χPT). The data cover the resonance region, up to an invariant mass of W ≈ 1.9  GeV. The generalized Gerasimov-Drell-Hearn sum, the moment Γd1 and the spin polarizability γ0d are precisely determined down to a minimum Q2 of 0.02  GeV2 for the first time, about 2.5 times lower than that of previous data. We compare them to several χPT calculations and models. These results are the first …


Efficacy Of Multimedia Learning Modules As Preparation For Lecture-Based Tutorials In Electromagnetism, James Christopher Moore Feb 2018

Efficacy Of Multimedia Learning Modules As Preparation For Lecture-Based Tutorials In Electromagnetism, James Christopher Moore

Physics Faculty Publications

We have investigated the efficacy of on-line, multimedia learning modules (MLMs) as preparation for in-class, lecture-based tutorials in electromagnetism in a physics course for natural science majors (biology and marine science). Specifically, we report the results of a multiple-group pre/post-test research design comparing two groups receiving different treatments with respect to activities preceding participation in Tutorials in Introductory Physics. The different pre-tutorial activities were as follows: (1) students were assigned reading from a traditional textbook, followed by a traditional lecture; and (2) students completed on-line MLMs developed by the Physics Education Research Group at the University of Illinois at Urbana …


Late History Graph, David Peak Jan 2018

Late History Graph, David Peak

Background

Late History graph image.


Background, 1, David Peak Jan 2018

Background, 1, David Peak

Background

This course deals with the structure of matter at its extreme length scales: cosmological on the large end (on the order of 1026 m), sub-nuclear on the small (less than 10-19 m). It also deals with the now firmly established realization that the organization of matter on these two phenomenally different scales is actually intimately connected. This course is about science in its most alive and vibrant state: what we think we know about the big and small of the universe changes virtually daily. Satellite observatories and ground-based particle accelerators make what was formerly “common knowledge” obsolete at a rapid …


Background, 2, David Peak Jan 2018

Background, 2, David Peak

Background

Ordinary, everyday, Galilean/Newtonian relativity

An “event” is something that happens at a point in space, at an instant in time. In physics, relativity means the rules by which two observers can compare and make sense of measurements each makes of the positions and times of the same events. In physics, an observer is not a person or an individual measuring device. Such isolated “detectors” are plagued by experimental issues of parallax, delay times, and so forth. For our purposes, an observer will always mean an infinite collection of rigidly attached, perfect sensors and microprocessors whose internal clocks are perfectly synchronized. …


History Graph, David Peak Jan 2018

History Graph, David Peak

Background

History graph image.


General Relativity, 2, David Peak Jan 2018

General Relativity, 2, David Peak

General Relativity

Newton’s law of gravitostatics is incompatible with special relativity. To see this, suppose at time t in frame O m1 is at x1(t) and m2 is at x2(t). Newton’s gravitational force law says F1on 2(t) = Gm1m2 / [x2(t) − x1(t)]2 and relativistic dynamics says dp2 /dt = F1on 2. Transforming to another frame Oʹ moving relative to O leads to dp′2/dt′ = F′1on 2. But what is F′1on 2 ? If x1(t) and …


General Relativity, 1, David Peak Jan 2018

General Relativity, 1, David Peak

General Relativity

In special relativity, events occur in the arena of space-time which may be coordinatized differently by different observers, but which is otherwise immutable. Adding gravity to relativity provides an amazing result: space-time becomes “organic,” taking its form from the matter and energy it contains. This is Einstein’s general theory of relativity and it has the capacity to tell us about the past and future of the universe. Embedded in the history book of the cosmos are several chapters on the origins of matter. As a result, relativity + gravity unites the structures of matter on the largest and smallest scales.


General Relativity, 5, David Peak Jan 2018

General Relativity, 5, David Peak

General Relativity

No abstract provided.


General Relativity, 4, David Peak Jan 2018

General Relativity, 4, David Peak

General Relativity

Orbital motion of small test masses

The starting point for analyzing free fall trajectories in the (2-space, 1-time) Schwarzschild spacetime is Equation (3) from GR 3:


General Relativity, 3, David Peak Jan 2018

General Relativity, 3, David Peak

General Relativity

Gravity as geometry: part II

Even in a region of space-time that is so small that tidal effects cannot be detected, gravity still seems to produce curvature. The argument for this point of view starts with the recognition that, for mechanical systems, it is impossible to distinguish a frame of reference with a uniform gravitational field from a uniformly accelerating frame that has no gravity. Thus, for example, in a (small) rocket ship with no windows it is not possible to determine whether the weight one reads standing on a scale at the tail of the rocket is due to …


Inflation (Excel), David Peak Jan 2018

Inflation (Excel), David Peak

General Relativity

No abstract provided.


General Relativity, 6, David Peak Jan 2018

General Relativity, 6, David Peak

General Relativity

Modern cosmography

The “normal” matter in the universe—i.e., stuff made of protons, neutrons, and electrons— consists, approximately, of lumps floating in a dilute fog. The lumps are galaxies, clusters of 107 to 1011 stars bound together by gravity. In the currently observable universe, it is estimated that there are roughly 1011 galaxies. The dilute fog is primarily neutral atomic hydrogen gas with some helium-4 mixed in (making up a total of 98% or more of the fog); there are also very small fractions of 2H (deuterium), 3He , and 7Li . The ratio …


General Relativity, 9, David Peak Jan 2018

General Relativity, 9, David Peak

General Relativity

Cosmic development

As discussed in GR 8, the cosmic scale factor a in the FLWR s-t obeys the Friedmann equation