Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1291 - 1320 of 36527

Full-Text Articles in Physical Sciences and Mathematics

Quantum Phases Of Lattice Dipolar Bosons Coupled To A High-Finesse Cavity, Yaghmorassene Hebib, Chao Zhang, Jin Yang, Barbara Capogrosso-Sansone May 2023

Quantum Phases Of Lattice Dipolar Bosons Coupled To A High-Finesse Cavity, Yaghmorassene Hebib, Chao Zhang, Jin Yang, Barbara Capogrosso-Sansone

Physics

Two types of long-range interactions, dipolar interaction and cavity-mediated interaction, lead to exotic quantum phases. Both interactions were realized and observed in optical lattice setups. Here, we study quantum phases of dipolar bosons trapped in optical lattices and coupled to a high-finesse cavity where both dipolar interaction and cavity-mediated interaction coexist. We perform quantum Monte Carlo simulations and find that the checkerboard solid is enhanced and the checkerboard supersolid phase can exist in a wide range of densities (e.g., 0.27≲n≲0.73). Our unbiased numerical results suggest that both solid and supersolid phases can be achieved experimentally with magnetic atoms coupled to …


Representations Of Time In Time-Based Media: An Exploration Of The Human Experience Of Temporality In Film And Tv, Nelea Fong May 2023

Representations Of Time In Time-Based Media: An Exploration Of The Human Experience Of Temporality In Film And Tv, Nelea Fong

Honors Thesis

Time is an aspect of the human experience that fascinates us but eludes our understanding. Humans have turned to science, philosophy, and theology in our endeavor to understand time, but our shared love and history of storytelling drives us to explore temporality through visual medias that have a structural foundation in time. Expanding our understanding of the human experience of time through time-based media such as movies and TV can point us toward comprehending various forms of time and how each person can perceive said time differently. Using film and TV theory, informed by scientific and philosophical explorations in the …


A Classification Of Tensors In Ecsk Theory, Joshua James Leiter May 2023

A Classification Of Tensors In Ecsk Theory, Joshua James Leiter

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

You might have heard of Einstein’s theory of General relativity (GR): it is the one where mass and energy curve the fabric of spacetime to create gravity. This is the major theory which allows communication through satellites and our GPS to work too! Wormholes have interested me, but there are some issues about forming them in GR. Interestingly enough, elementary particles are also characterized by their spin in the standard model. However, intrinsic spin is nowhere geometrically coupled to the geometry of spacetime in Einstein’s theory. Later, Élie Cartan, Dennis Sciama, and Tom Kibble all flushed out adding different aspects …


Characterization Of 2d Quantum Materials Using Ai And Large-Scale Quantum Data Collection, Apoorva Bisht May 2023

Characterization Of 2d Quantum Materials Using Ai And Large-Scale Quantum Data Collection, Apoorva Bisht

Computer Science and Computer Engineering Undergraduate Honors Theses

2D materials like hexagonal boron nitride, graphene, and tungsten diselenide are widely utilized for studying their unique mechanical and opto-electronic properties to exploit them to make transistors and fabricating a variety of other devices. All these applications require that the 2D materials used be of specific uniform thickness. Until very recently, this process has been largely manual and tedious. However, few applications exploit the characteristic color-to-thickness correspondence of these near-transparent materials. To continue this effort, in this work we create a large-scale dataset for three different materials (hBN, graphene, and WSe$_2$) to train and test an image segmentation model along …


Self-Consistent Effects Of The Recirculating Plasmapshere On The Development Of Storm Time Dynamics In The Inner Magnetosphere., Christian-Andrew Bagby-Wright May 2023

Self-Consistent Effects Of The Recirculating Plasmapshere On The Development Of Storm Time Dynamics In The Inner Magnetosphere., Christian-Andrew Bagby-Wright

Physics Dissertations

The near Earth space environment is a highly coupled system. The Interplanetary Magnetic Field (IMF) interacts with the magnetosphere in myriad ways depend on the orientation of the IMF to the magnetosphere. The magnetic fields of the magnetosphere and the IMF trap plasma and carry the plasma with it as both magnetic fields evolve over time. This plasma can in turn interact with other plasmas, carried by other field lines, affecting the dynamics of the other population and the magnetic field lines of both populations. The nature, frequency, and importance of interactions between different plasma, or magnetic fields, varies greatly …


Boundaries And Currents Of The Dayside Magnetosphere: Mhd Simulations And Observations, Pauline Marie Dredger May 2023

Boundaries And Currents Of The Dayside Magnetosphere: Mhd Simulations And Observations, Pauline Marie Dredger

Physics Dissertations

The solar wind streams through space at supersonic speeds, carrying plasma and the interplanetary magnetic field (IMF) from the sun. Earth’s magnetosphere presents a magnetosonic obstacle to the solar wind flow, which slows down suddenly, creating a bow shock. Between the bow shock and Earth’s magnetic field is the region of space called the magnetosheath, which contains the dense plasma and turbulent IMF of the shocked solar wind. The magnetopause is the boundary between the magnetosheath and the region of near-Earth space dominated by the terrestrial magnetic field; its location is determined by the competing pressures of the plasma in …


Assessment Of Bridge Pier Response To Fire, Vehicle Impact, And Air Blast, Chen Fang, Qusai Alomari, Daniel G. Linzell May 2023

Assessment Of Bridge Pier Response To Fire, Vehicle Impact, And Air Blast, Chen Fang, Qusai Alomari, Daniel G. Linzell

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Highway bridges exposed to intentional or unintentional fire followed by combined vehicle impact and air blast are at risk of significant damage and, possibly, collapse. Limited studies examining the complex effects of these extreme demands on bridge support elements and parametrizing their response and damage are found in the open literature. Research that is presented is part of an ongoing numerical investigation examining round, multi-column, reinforced concrete (RC), bridge pier behavior subject to multi-hazard scenarios involving fire, vehicle impact, and air blast. Detailed nonlinear finite element analysis models of single columns and multi-column piers supported by a pile foundation system …


Computational Modeling Of Superconductivity From The Set Of Time-Dependent Ginzburg-Landau Equations For Advancements In Theory And Applications, Iris Mowgood May 2023

Computational Modeling Of Superconductivity From The Set Of Time-Dependent Ginzburg-Landau Equations For Advancements In Theory And Applications, Iris Mowgood

Computational and Data Sciences (PhD) Dissertations

A full review of the research conducted and published during my PhD studies in Computational and Data Sciences at Chapman University, under the advisement of Dr. Armen Gulian, are presented. Using the set of time-dependent Ginzburg-Landau (TDGL) equations with inclusion of the interference current and the non-equilibrium phonon term, we modeled the dynamics of superconductors in various theory revealing states and practical purposes. A review of the history and phenomenon of superconductivity, including modern applications, is introduced. The Josephson effect and associated Josephson junction are discussed for comparison to our analogous results with the 1-D superconducting wire. The mathematics of …


Response Of The Isothermal Mode Grüneisen Tensor Across Phase Boundaries, Jasmine K. Hinton May 2023

Response Of The Isothermal Mode Grüneisen Tensor Across Phase Boundaries, Jasmine K. Hinton

UNLV Theses, Dissertations, Professional Papers, and Capstones

The assumptions for the 1912 Grüneisen parameter are reviewed, particularly in the cases of anisotropy, high temperatures, and across phase boundaries. Two main case studies are shown: β-Sn, and Cd. The main techniques of this work involve resistively heated diamond anvil cells with both optical Raman spectroscopy and x-ray diffraction. It is found in Sn that the isothermal mode Grüneisen tensor along increasing isotherms diverges from the single-valued temperature aggregate at the onset of melt, and this is proposed to use as a method of exploring melt phase boundaries in other systems. This method is examined once again on another …


Exploration Of H2o Ice At Extreme Conditions, Zachary M. Grande May 2023

Exploration Of H2o Ice At Extreme Conditions, Zachary M. Grande

UNLV Theses, Dissertations, Professional Papers, and Capstones

Static compression experiments on water ice are needed for precise characterization and discovery of new ice phases near room temperature. Here I present my efforts and the developments that have been made to reduce detrimental effects found in high-pressure experiments in order to acquire precise measurements on ice approaching 3 Mbar. Several key observations are made, relating to the phase transition of ice-VII to X, an intermediate phase I have named ice-VIIt and evidence of a post ice X phase. Some of these experiments have been replicated using D2O ice as well, in order to gain insight into nuclear quantum …


Stoichiometric Determination Of Hydride Materials At Extreme Conditions, Gregory Alexander Smith May 2023

Stoichiometric Determination Of Hydride Materials At Extreme Conditions, Gregory Alexander Smith

UNLV Theses, Dissertations, Professional Papers, and Capstones

Hydrogen was predicted to be a high-temperature superconductor at near-megabar conditions in 1968,[1] but only recently was been experimentally observed.[2] This is due to the extraneous metrological constraint of requiring 5 megabars of pressure to stabilize. A more practical approach for synthesis of high-temperature superconductors has been pro-posed through the use of hydride compounds. Recently, a surge of rare earth hydrides have achieved critical superconducting transition temperatures (T_C ) close to room temperature.[3, 4, 5, 6] However, due to limitations of the necessary instrumentation to achieve megabar pressures, many techniques traditionally used to measure stoichiometry are unavailable.Three works presented in …


The Use Of Fluorescence Resonance Energy Transfer And Bent Dna To Study Dna And Ion Interactions, Kaitlin Bullard May 2023

The Use Of Fluorescence Resonance Energy Transfer And Bent Dna To Study Dna And Ion Interactions, Kaitlin Bullard

Physics Undergraduate Honors Theses

Studying DNA interactions is advantageous to developments in the medical field since DNA and its interactions affect our health greatly. In addition, it is important to understand how the bendability of DNA depends on metal ions, which are essential for various fundamental processes in cells. In this work, we investigate the use of FRET and self-assembled bent DNA molecules to quantify DNA interactions with magnesium ions. We measured that the FRET efficiency increased at higher concentrations of magnesium ions. We also ran simulations to further understand the mechanisms. These observations show that magnesium ions increase the stability and flexibility of …


Excitation Power Dependence Of Blinking In Copper-Indium-Sulfide Quantum Dots, Nicholas Chambers May 2023

Excitation Power Dependence Of Blinking In Copper-Indium-Sulfide Quantum Dots, Nicholas Chambers

Physics Undergraduate Honors Theses

Under continuous excitation, quantum dots exhibit random transitions between fluorescent ON states and non-fluorescent OFF states --- a phenomenon known as blinking. A physical description of the mechanism responsible for blinking that applies broadly to many types of quantum dots remains under debate. We study the blinking behavior of the non-toxic CuInS2 quantum dot, a system that has seen little investigation at the single-particle level. In particular, the optical properties of CuInS2 quantum are often improved by adding ZnS to the nanoparticles, but this addition leads to complex structural-optical property relationships that are even less understood. To probe the relationship …


Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers May 2023

Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers

Physics Undergraduate Honors Theses

Terahertz (THz) photoconductive antennas (PCAs) using 40nm thin-film flakes of black phosphorus (BP) and hexagonal boron nitride (hBN) have been shown computationally to be capable of THz emission comparable to those based on GaAs [2]. In this paper, I briefly describe the scientific and practical interest in THz emissions and explain what warrants research into black phosphorus as a photoconductive semiconductor in THz devices. Furthermore, I outline the basic principle of how these antennas work and mention alternative designs produced by other researchers in the past. Finally, I summarize the fabrication process of these antennas, as well as the measurements …


Photon Correlation Measurements And Second Harmonic Generation Using Pulsed Lasers, Apoorva Bisht May 2023

Photon Correlation Measurements And Second Harmonic Generation Using Pulsed Lasers, Apoorva Bisht

Physics Undergraduate Honors Theses

Correlation measurements are one of the fundamental ways to understand the photon statistics/distribution for a source of light. It is also an important method to confirm single photon sources by confirming the anitbunching nature. This project developed a correlation measurement system, utilized field programmable gate arrays, and non-linear crystals for processes like second harmonic generation and down conversion.


Super P-Sulfur Cathodes For Quasi-Solid-State Lithium-Sulfur-Batteries., Milinda Bharatha Kalutara Koralalage May 2023

Super P-Sulfur Cathodes For Quasi-Solid-State Lithium-Sulfur-Batteries., Milinda Bharatha Kalutara Koralalage

Electronic Theses and Dissertations

Lithium-Sulfur (Li-S) batteries have become a promising candidate to meet the current energy storage demand, with its natural abundance of materials, high theoretical capacity of 1672 mAhg-1, high energy density of 2600 Whkg-1, low cost and lower environmental impact. Sulfide based solid state electrolytes (SSEs) have received greater attention due to their higher ionic conductivity, compatible interface with sulfur-based cathodes, and lower grain boundary resistance. However, the interface between SSEs and cathodes has become a challenge in all solid-state Li-S batteries due to the rigidity of the participating surfaces. A hybrid electrolyte containing SSE coupled with a small amount of …


Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back May 2023

Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back

All Theses

The effects of ion irradiation on the physical properties of materials make EBITs an invaluable tool for many scientific and engineering fields. Many experiments rely on the use of these lab setups to test for device reliability, explore surface physics phenomena, and replicate the environment for many physical systems that are not readily accessible. We seek to extend the capabilities of these experiments using the CUEBIT and a new sample holder installed in section 3.

This thesis begins by presenting an overview of the CUEBIT and the basic operations of the equipment. This is followed by a brief explanation of …


Development Of A 780 Nm External Cavity Diode Laser For Rubidium Spectroscopy, Catherine Sturner May 2023

Development Of A 780 Nm External Cavity Diode Laser For Rubidium Spectroscopy, Catherine Sturner

Undergraduate Honors Theses

This thesis describes the work done to improve an external cavity diode laser. These improvements consisted of constructing an insulated housing to stabilize the temperature of the laser, tuning the proportional-integral-derivative feedback of the temperature controller, achieving resonance frequencies of rubidium, and implementing and optimizing feed-forward scanning of the frequency of the laser. The laser was then successfully used to measure the linewidth of another laser in the laboratory to better understand how that laser could be best used. The knowledge gained in this thesis can also be used to change the frequency of the laser to achieve other resonances …


Monoenergetic Neutrinos From Wimp Annihilations In Jupiter, George French May 2023

Monoenergetic Neutrinos From Wimp Annihilations In Jupiter, George French

Undergraduate Honors Theses

Several important lines of evidence point to the existence of dark matter, but it has not yet been experimentally detected. There are several proposed candidates for what dark matter is like, the most popular being weakly interacting massive particles (WIMPs). It has been well-established in the literature that WIMPs would be captured by the Sun after scattering off of atomic nuclei to a velocity lower than the escape velocity. Over time, many WIMPs would be captured and begin to annihilate in the solar core; this would result in the production of kaons that decay at rest into monoenergetic 236 MeV …


Spatial Variability Of Alkali-Metal Polarization, Lauren Vannell May 2023

Spatial Variability Of Alkali-Metal Polarization, Lauren Vannell

Undergraduate Honors Theses

An experiment was conducted at William & Mary to study how alkali polarization varies spatially in a spherical cell during the process of optical pumping. Similar cells are used to study the neutron via electron scattering from polarized 3He nuclei, and those experiments could be improved if alkali polarization is maximized and uniformly distributed throughout the cell. The results of this experiment indicate that the alkali polarization is non-uniform and more heavily concentrated on the side of the cell facing the pump laser.


Exploring Numerical Simulations Of Localized Geomagnetic Disturbances, Elizabeth Vandegriff May 2023

Exploring Numerical Simulations Of Localized Geomagnetic Disturbances, Elizabeth Vandegriff

Physics Dissertations

One of the prominent effects of space weather is the formation of rapid geomagnetic field variations on Earth’s surface driven by the magnetosphere-ionosphere system. These Geomagnetic Disturbances (GMDs) cause Geomagnetically Induced Currents (GICs) to run through ground-conducting systems. GMDs can often be high amplitude and small-scale (100-500 kilometers) and we classify these as Localized GMDs (LGMDs). LGMDs are both hazardous to the power grid and difficult to predict. Modeling LGMDs is therefore a critical step for risk mitigation but is complicated due to the dynamic and sometimes highly localized nature of the phenomena. At present, global magnetohydrodynamic (MHD) models of …


Novel Roles Of Standard And Non-Standard Null Lagrangians In Classical And Quantum Physics, Lesley Catherine Vestal May 2023

Novel Roles Of Standard And Non-Standard Null Lagrangians In Classical And Quantum Physics, Lesley Catherine Vestal

Physics Dissertations

The three known families of Lagrangians are standard, non-standard, and null Lagrangians. While Lagrangians are widely used in Physics for their ability to characterize physical systems, most of this work uses only standard Lagrangians. As such, standard Lagrangians have been studied in Physics for around three hundred years; however, non-standard Lagrangians for systems in Physics have been considered only for a few decades, and null have been ignored almost entirely. Although only some Lagrangians are null Lagrangians, all Lagrangians can be categorized as either standard or non-standard Lagrangians, meaning that there exist standard null Lagrangians and non-standard null Lagrangians. My …


Model And Observation Comparisons Of Ionospheric Current Systems, Tre'shunda James May 2023

Model And Observation Comparisons Of Ionospheric Current Systems, Tre'shunda James

Physics Dissertations

The interaction between the dynamically changing solar wind and Earth’s magnetosphere results in several different current systems. The most relevant to space weather are the Birkeland currents, a.k.a field-aligned currents (FACs), that couple the magnetosphere to the ionosphere. These currents flow into and out of the ionosphere and are closed through the ionosphere by the horizontally flowing eastward and westward electrojets. This FAC-electrojet current system is responsible for some of the most beautiful and detrimental space weather impacts. The aurora borealis (or northern lights) in the Northern Hemisphere and aurora australis (or southern lights) in the Southern Hemisphere are displays …


Investigation Of Optical And Electrical Properties Of Noble Metal And Superconducting Thin Films And Design And Fabrication Of Metamaterial Solar Absorbers, Vivek Khichar May 2023

Investigation Of Optical And Electrical Properties Of Noble Metal And Superconducting Thin Films And Design And Fabrication Of Metamaterial Solar Absorbers, Vivek Khichar

Physics Dissertations

An extensive study of light-matter interactions leading to the generation of photon drag voltage under surface plasmon resonance conditions in noble metal thin films was undertaken by performing a series of experimental measurements and numerical simulations. The drag voltage originates from a force that arises because of the transfer of momentum from incident light to electrons. This transfer of photon momentum leads to an electric current, which in turn results in the generation of drag voltage. The effect is particularly enhanced under surface plasmon resonance conditions and thereby reinforces the interaction between light and collective oscillations of the surface charges. …


Cellulose Nanocrystal Dielectric Elastomers, David Frailey May 2023

Cellulose Nanocrystal Dielectric Elastomers, David Frailey

Theses and Dissertations

Optical devices, such as filters and sensors, have numerous advantages including compactness in size and immunity from electromagnetic interference. The fabrication of optical devices often requires precision and complicated processing, resulting in expensive and delicate components. Cellulose nanocrystals (CNCs) are biomaterials that can self-assemble into liquid crystals, similar to those used in electronic displays. This material can function as an optical grating by reflecting/transmitting circularly polarized light at certain wavelengths and viewing angles. Since gratings are building blocks of optical systems, like lasers and lidars, their fabrication at low costs will enable the further proliferation of optical technologies. Furthermore, if …


Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel May 2023

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel

Honors Scholar Theses

Among structural biology techniques, Nuclear Magnetic Resonance (NMR) provides a holistic view of structure that is close to protein structure in situ. Namely, NMR imaging allows for the solution state of the protein to be observed, derived from Nuclear Overhauser Effect restraints (NOEs). NOEs are a distance range in which hydrogen pairs are observed to stay within range of, and therefore experimental data which computational models can be compared against. To that end, we investigated the effects of adding the NOE restraints as distance restraints in Molecular Dynamics (MD) simulations on the 24 residue HP24stab derived villin headpiece subdomain to …


Applying Instrumental Neutron Activation Analysis To Assess Air Pollution With Spanish Moss As A Bioindicator In The Low Country Of The Savannah River Basin, Christina Jiang May 2023

Applying Instrumental Neutron Activation Analysis To Assess Air Pollution With Spanish Moss As A Bioindicator In The Low Country Of The Savannah River Basin, Christina Jiang

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Savanah River Basin is an area of 9,850 square miles that stretches from the border between South Carolina and Georgia, which empties into the Atlantic Ocean near Savannah, Ga. This area is home to surrounding cities, industrial sites, and the Savanah River Site. It is well documented that traffic, industrial operations, and agriculture contribute to worsening air pollution that needs to be monitored. While Tillandsia usneoides (Spanish moss) has been used in previous studies that prove it to be an effective biomonitor for air pollution and an accumulator of heavy metals, there have been no biomonitoring studies in the …


Measurements Of Magnetic Field Penetration Of Materials For Superconducting Radiofrequency Cavities, Iresha Harshani Senevirathne May 2023

Measurements Of Magnetic Field Penetration Of Materials For Superconducting Radiofrequency Cavities, Iresha Harshani Senevirathne

Physics Theses & Dissertations

Superconducting Radio Frequency (SRF) cavities used in particle accelerators are typically formed from or coated with superconducting materials. Currently high purity niobium is the material of choice for SRF cavities which have been optimized to operate near their theoretical field limits. This brings about the need for significant R&D efforts to develop next generation superconducting materials which could outperform Nb and keep up with the demands of new accelerator facilities. To achieve high quality factors and accelerating gradients, the cavity material should be able to remain in the superconducting Meissner state under high RF magnetic field without penetration of quantized …


Spectra Of Atmospheric And Astronomical Molecules, W. D. Cameron May 2023

Spectra Of Atmospheric And Astronomical Molecules, W. D. Cameron

Physics Theses & Dissertations

Spectroscopy techniques are focused on spectra of molecules of interest to the Earth’s atmosphere and/or astronomy and astrophysics. Laboratory spectroscopy as well as remote satellite sensing are applied. Using the Fourier transform spectrometer aboard the Atmospheric Chemistry Experiment (ACE) satellite to measure the absorption spectra of the Earth’s atmosphere through solar occultation limb observation demonstrates that volcanic eruption plumes can be located and tracked through their SO2 content. The presence of those plumes is corroborated by overlaying infrared atmospheric aerosol extinction observed by the 1 μm imager on the same satellite. Tracking atmospheric aerosol movement with the ACE …


Design And Construction Of A Longitudinally Polarized Solid Nuclear Target For Clas12, Victoria Lagerquist May 2023

Design And Construction Of A Longitudinally Polarized Solid Nuclear Target For Clas12, Victoria Lagerquist

Physics Theses & Dissertations

A new polarized nuclear target has been developed, constructed, and deployed at Jefferson Laboratory in Newport News, VA for use with the upgraded 12 GeV CEBAF (Continuous Electron Beam Accelerator Facility) accelerator and the Hall B CLAS12 (12 GeV CEBAF Large Acceptance Spectrometer) detector array. This ‘APOLLO’ (Ammonia POLarized LOngitudinally) target is a longitudinally polarized, solid ammonia, nuclear target which employs DNP (Dynamic Nuclear Polarization) to induce a net polarization in samples of protons (NH3) and deuterons (ND3) cooled to 1K via helium evaporation, held in a 5T polarizing field supplied by the CLAS12 spectrometer, and irradiated with 140 GHz …