Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1321 - 1350 of 36527

Full-Text Articles in Physical Sciences and Mathematics

Effect On Focusing Fields By Ferromagnetic Cell Cores In Linear Induction Accelerators, Cooper Guillaume May 2023

Effect On Focusing Fields By Ferromagnetic Cell Cores In Linear Induction Accelerators, Cooper Guillaume

Senior Honors Theses

In the Los Alamos National Laboratories DARHT facility, there are two perpendicular linear induction accelerators, LIAs. The LIAs’ solenoids produce magnetic fields which focus the electron beam. Simultaneously, the accelerating pulse creates a magnetic field. These two field intensities act upon a ferromagnetic material in the cells to enhance magnetic flux density. Due to the nonlinearity of the material, this flux density will reach a saturation point. In turn, the magnetic field intensity of the axial solenoidal magnetic field will be affected and slightly altered. The width of the electron beam will increase, causing a decrease in effectiveness. Through simulation, …


Treatment Planning Automation For Rectal Cancer Radiotherapy, Kai Huang May 2023

Treatment Planning Automation For Rectal Cancer Radiotherapy, Kai Huang

Dissertations & Theses (Open Access)

Background

Rectal cancer is a common type of cancer. There is an acute health disparity across the globe where a significant population of the world lack adequate access to radiotherapy treatments which is a part of the standard of care for rectal cancers. Safe radiotherapy treatments require specialized planning expertise and are time-consuming and labor-intensive to produce.

Purpose:

To alleviate the health disparity and promote the safe and quality use of radiotherapy in treating rectal cancers, the entire treatment planning process needs to be automated. The purpose of this project is to develop automated solutions for the treatment planning process …


Exploring The Dependence Of Bulges In Spiral Galaxies On Their Environment, William Jackson Clark May 2023

Exploring The Dependence Of Bulges In Spiral Galaxies On Their Environment, William Jackson Clark

Physics Theses & Dissertations

Recent research has shown a relationship between spiral galaxy satellite populations and the size of spiral bulges. The modern cosmological model of our universe (ΛCDM), does not predict this. Instead, ΛCMD predicts that only the total dynamical mass of a host galaxy should be correlated with satellite populations. We investigate this relationship in regimes other than satellites. In this study we compare the bulge to total mass ratios of spiral galaxies to the number of nearby galaxies within “n” Mpc. We use four papers from literature that calculate bulge to total mass ratios of 189 spiral galaxies using …


Nb3Sn Coating Of Twin Axis Cavity And Other Complex Srf Cavity Structures, Jayendrika Kumari Tiskumara May 2023

Nb3Sn Coating Of Twin Axis Cavity And Other Complex Srf Cavity Structures, Jayendrika Kumari Tiskumara

Physics Theses & Dissertations

In the field of Accelerator Science, for the low cost and increased quality factor, thin films coated niobium cavities are used in the modern SRF research. Within the potential substances, Nb3Sn has shown higher critical temperature than niobium. Here the tin vapor diffusion method is used as the preferred technique to coat niobium cavities. So far, only elliptical cavities have been coated with Nb3Sn and this technique has not yet been applied to cavities with complex geometries, which are also helpful in the accelerator science field. The Half-wave resonator could provide us data across frequencies of …


Another Shipment Of Six Short-Period Giant Planets From Tess, Joseph E. Rodriguez, Samuel N. Quinn, Andrew Vanderburg, George Zhou, Jason D. Eastman, Erica Thygesen, Bryson Cale, David R. Ciardi, Phillip A. Reed, Ryan J. Oelkers May 2023

Another Shipment Of Six Short-Period Giant Planets From Tess, Joseph E. Rodriguez, Samuel N. Quinn, Andrew Vanderburg, George Zhou, Jason D. Eastman, Erica Thygesen, Bryson Cale, David R. Ciardi, Phillip A. Reed, Ryan J. Oelkers

Physics and Astronomy Faculty Publications and Presentations

We present the discovery and characterization of six short-period, transiting giant planets from NASA’s Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), and TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G < 11.8, 7.7 <K < 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program Working Group, we have determined that the planets are Jovian-sized (RP = 0.99--1.45 RJ), have masses ranging from 0.92 to 5.26 MJ, and orbit F, G, and K stars (4766 ≤ Teff ≤ 7360 K). We detect a significant orbital …


Joint Constraints On Kepler-36 From Kepler And New Keck-Hires Data, Nicholas Juliano May 2023

Joint Constraints On Kepler-36 From Kepler And New Keck-Hires Data, Nicholas Juliano

UNLV Theses, Dissertations, Professional Papers, and Capstones

I analyze new HIRES Radial Velocity (RV) data in conjunction with transit mid-times and uncertainties from the full 17 quarters of Kepler data to reassess the orbital parameters of the Kepler-36 system. Six additional RV measurements were taken by the Keck-HIRES spectrograph from September 21, 2021 to October 11, 2021. I carry out a differential evolution Markov Chain Monte Carlo-based (DEMCMC) analysis to infer improved orbital elements for the two known planets in the system. Leveraging additional information provided by the new RV measurements, I extend this DEMCMC analysis to a possible three-planet configuration. I explore the likelihood of a …


Simulating Radial Ring Structure With An Ambipolar Elsasser (Am) Bump In Non-Ideal Magnetohydrodynamics Of Protoplanetary Disks, Aleksey S. Mohov May 2023

Simulating Radial Ring Structure With An Ambipolar Elsasser (Am) Bump In Non-Ideal Magnetohydrodynamics Of Protoplanetary Disks, Aleksey S. Mohov

UNLV Theses, Dissertations, Professional Papers, and Capstones

Rings are one of the most ubiquitous substructures observed in protoplanetary disks. They are known to be a robust site for planetesimal formation; thus we look for mechanisms that can originate stable rings. From chemical modelling of snow lines, we expect a bump in the Ambipolar Diffusion (AD) Elssaser number (Am) in the radial direction. We use the Athena++ code to model the non-ideal Magentohydrodynamics (MHD) behavior of an Am bump. We explore a parameter space of Gaussian bumps with Am = 5, 1, 0.5 peak strength and σ = 0.25, 1, 5. The Gaussian profile is inserted into the …


Analysis And Application Of Finite Element And High-Order Finite Difference Methods For Maxwell’S Equations In Complex Media, Li Zhu May 2023

Analysis And Application Of Finite Element And High-Order Finite Difference Methods For Maxwell’S Equations In Complex Media, Li Zhu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Perfectly Matched Layer (PML) technique is an effective tool introduced by B´erenger [13] to reduce the unbounded wave propagation problem to a bounded domain problem. This dissertation focuses on two different PML models and their applications to wave propagation problems with Maxwell’s equation in complex media. We investigate these models using two popular numerical methods: the Finite Difference Method (FDM) in Chapters 2 and 3, and the Finite Element Method (FEM) in Chapters 4 and 5.In Chapter 2, we focus on analyzing the stability of a PML developed by B’ecache et al. [10] for simulating wave propagation in the …


Cloud Microphysical Response To Entrainment And Mixing Is Locally Inhomogeneous And Globally Homogeneous: Evidence From The Lab, Jaemin Yeom, Ian Helman, Prasanth Prabhakaran, Jesse Anderson, Fan Yang, Raymond Shaw, Will Cantrell Apr 2023

Cloud Microphysical Response To Entrainment And Mixing Is Locally Inhomogeneous And Globally Homogeneous: Evidence From The Lab, Jaemin Yeom, Ian Helman, Prasanth Prabhakaran, Jesse Anderson, Fan Yang, Raymond Shaw, Will Cantrell

Michigan Tech Research Data

The effects of entrainment-mixing on the cloud droplet size distribution are examined in the Pi cloud chamber that creates a turbulent supersaturated environment for cloud formation. The experiments are conducted with a temperature-controlled flange to mimic the entrainment-mixing process. The entrainment zone is created at the center of the top surface of the chamber, allowing dry air of controlled temperature (Te) and flow rate (Qe) to flow into the mixing cloud region. Due to the large-scale circulation, the downwind region is directly affected by entrained dry air from the flange, whereas the upwind region is representative …


Constraining H0 Via Extragalactic Parallax, Nicholas Ferree Apr 2023

Constraining H0 Via Extragalactic Parallax, Nicholas Ferree

Honors Theses

We examine the prospects for measurement of the Hubble parameter 𝐻0 via observation of the secular parallax of other galaxies due to our own motion relative to the cosmic microwave background rest frame. Peculiar velocities make distance measurements to individual galaxies highly uncertain, but a survey sampling many galaxies can still yield a precise 𝐻0 measurement. We use both a Fisher information formalism and simulations to forecast errors in 𝐻0 from such surveys, marginalizing over the unknown peculiar velocities. The optimum survey observes ∼ 102 galaxies within a redshift 𝐻0max = 0.06. The required errors …


Study Of Missing Mass Background In The Clas12 Detector, Jessie Hess, Gerard P. Gilfoyle, Lamya Baashen Apr 2023

Study Of Missing Mass Background In The Clas12 Detector, Jessie Hess, Gerard P. Gilfoyle, Lamya Baashen

Honors Theses

At Jefferson Lab we use the CLAS12 detector to measure the neutron magnetic form factor. An accurate measurement of the CLAS12 neutron detection efficiency (NDE) is required. We use the nuclear reaction ���� → ��′��+�� as a source of tagged neutrons and obtain the NDE from the ratio of expected neutrons to detected ones. We assume the final state consists of ��′��+�� only, use the ��′��+ information to predict the neutron's position(expected) and then search for that neutron(detected). We select neutrons with the missing mass (MM) technique. We use simulation to validate our methods. We simulated events with the Monte-Carlo …


Optimizing A Passive Tracking Solar Panel System, Carsten Johnson Apr 2023

Optimizing A Passive Tracking Solar Panel System, Carsten Johnson

Scholars Day Conference

Renewable energy has been gaining attention from individuals to government agencies as the negative effects of fossil fuel usage has been realized. Solar power is a reliable and green alternative to fossil fuels. Solar power is harnessed through the direct absorption of rays from the sun. In this experiment, a passive sun-tracking system using a shape memory alloy (SMA), gears, and a fresnel lens rotated a solar panel to face the sun throughout the day. At the end of the day the system rotates the solar panel back to the east in preparation for the next day’s cycle to begin. …


The Influence Of The Substrate On The Functionality Of Spin Crossover Molecular Materials, Saeed Yazdani, Jared Phillips, Thilini K. Ekanayaka, Ruihua Cheng, Peter A. Dowben Apr 2023

The Influence Of The Substrate On The Functionality Of Spin Crossover Molecular Materials, Saeed Yazdani, Jared Phillips, Thilini K. Ekanayaka, Ruihua Cheng, Peter A. Dowben

Department of Physics and Astronomy: Faculty Publications

Spin crossover complexes are a route toward designing molecular devices with a facile readout due to the change in conductance that accompanies the change in spin state. Because substrate effects are important for any molecular device, there are increased efforts to characterize the influence of the substrate on the spin state transition. Several classes of spin crossover molecules deposited on different types of surface, including metallic and non-metallic substrates, are comprehensively reviewed here. While some non-metallic substrates like graphite seem to be promising from experimental measurements, theoretical and experimental studies indicate that 2D semiconductor surfaces will have minimum interaction with …


Characterization Of Extended Uncertainty Principle Black Holes, Juan Uribe, Jonas Mureika Apr 2023

Characterization Of Extended Uncertainty Principle Black Holes, Juan Uribe, Jonas Mureika

Honors Thesis

Black Holes are special objects as they are at the intersection of Quantum Mechanics and General Relativity. A central tenant of quantum mechanics is the Uncertainty Principle that dictates we cannot know with complete certainty position and momentum at the same time. The Extended Uncertainty Principle introduces a position-related uncertainty correction L_* to account for General Relativity. In a previous paper, a black hole metric associated with the Extended Uncertainty Principle was derived, by modifying the metric function of a Schwarzschild black hole. This metric introduces near-horizon structures that should produce observable effects, such as love numbers, gravitational wave echoes, …


Electron Charge To Mass Ratio, Tori Freeman, Quinlin Reynolds Apr 2023

Electron Charge To Mass Ratio, Tori Freeman, Quinlin Reynolds

ATU Research Symposium

The purpose of this experiment is to confirm the e/m ratio and charge of an electron discovered initially by J.J. Thomson. We use an electron beam generated inside an e/m tube and Helmholtz coils that generate a magnetic field which deflects the path of the electrons. The radius of the path can be measured and from there the magnitude of the magnetic field and the charge-to-mass ratio can be found. This experiment was successful in confirming the results found by J.J. Thomson and his cathode ray experiments. The results of this experiment had a 0.5% error with the accepted e/m …


Investigating Properties Of Commercially Available Ir Detector Technology, Ethan Taylor Apr 2023

Investigating Properties Of Commercially Available Ir Detector Technology, Ethan Taylor

ATU Research Symposium

With the ability to transcode valuable information from light emitting objects, infrared (IR) detector technology has begun to find recreational use in the form of non-contact thermometers and home insulation tools. Research and industry have long been using IR technology in the form of high-altitude balloons, CubeSats, and UAV cameras, but the technology remains a niche market, and thus, a burdensome financial investment. As such, given general consumer products recently introduced as more economically viable, we sought to design an affordable IR camera capable of effective and meaningful data collection. To do so, we utilized a Raspberry Pi 4 and …


An Investigation Into The Physical Properties Governing The​ Coupled Harmonic Oscillator​, Ethan Taylor, Jj Rivera Apr 2023

An Investigation Into The Physical Properties Governing The​ Coupled Harmonic Oscillator​, Ethan Taylor, Jj Rivera

ATU Research Symposium

The coupled harmonic oscillator is an extremely important model in physics - especially in the field of solid state physics where the forces that tie atoms to their equilibrium positions are much stronger than their inter-atomic coupling forces. Given a coupled spring-mass system, we want to theoretically determine and then experimentally verify the normal frequencies involved in coupled harmonic oscillation. To do so, a coupled spring-mass system was built using an air track, carts, and PASCO motion detectors, the normal frequencies were theoretically calculated, and then we experimentally verified these normal frequencies with 4 trials: Symmetric, Antisymmetric, and two Mixed …


Process Of Building And Designing A Spectrometer, Tori Freeman Apr 2023

Process Of Building And Designing A Spectrometer, Tori Freeman

ATU Research Symposium

Spectroscopy is the study and measurement of electromagnetic spectra resulting from electromagnetic radiation interacting with matter. Each element when excited emits a unique spectrum containing light of various wavelengths. The identity of the element can then be determined by examining the spectra. A spectrometer is a scientific instrument that utilizes optics, mirrors, and lenses to capture and examine spectra. A classroom spectrometer is potentially useful in the demonstration of numerous physics principles such as diffraction, reflection, ray optics, etc.

Keywords: Spectrometry, optics, spectrum


Optical Fiber Tip Micro Anemometer, Jeremiah C. Williams, Hengky Chandrahalim Apr 2023

Optical Fiber Tip Micro Anemometer, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A passive microscopic flow sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fiber. The three-dimensional microscopic optical structure includes a post attached off-center to and extending longitudinally from the cleaved tip of the optical fiber. A rotor of the three-dimensional microscopic optical structure is received for rotation on the post. The rotor has more than one blade. Each blade has a reflective undersurface that reflects a light signal back through the optical fiber when center aligned with the optical fiber, the blades of the rotor shaped to rotate at a rate related to …


The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi Apr 2023

The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi

Electronic Thesis and Dissertation Repository

Recent observations of protostellar cores reveal complex magnetic field configurations that are distorted in the innermost disk region. Unlike the prestellar phase, where the magnetic field geometry is simpler with an hourglass configuration, magnetic fields in the protostellar phase are sculpted by the formation of outflows and rapid rotation. This gives rise to a significant azimuthal (or toroidal) component that has not yet been analytically modelled in the literature. Moreover, the onset of outflows, which act as angular momentum transport mechanisms, have received considerable attention in the past few decades. Two mechanisms: 1) the driving by the gradient of a …


Stabilizing Polar Phases In Binary Metal Oxides By Hole Doping, Tengfei Cao, Guodong Ren, Ding-Fu Shao, Evgeny Y. Tsymbal, Rohan Mishra Apr 2023

Stabilizing Polar Phases In Binary Metal Oxides By Hole Doping, Tengfei Cao, Guodong Ren, Ding-Fu Shao, Evgeny Y. Tsymbal, Rohan Mishra

Department of Physics and Astronomy: Faculty Publications

The recent observation of ferroelectricity in the metastable phases of binary metal oxides, such as HfO2, ZrO2, Hf0.5Zr0.5O2, and Ga2O3, has garnered a lot of attention. These metastable ferroelectric phases are typically stabilized using epitaxial strain, alloying, or defect engineering. Here, we propose that hole doping plays a key role in the stabilization of polar phases in binary metal oxides. Using first-principles density-functional-theory calculations, we show that holes in these oxides mainly occupy one of the two oxygen sublattices. This hole localization, which is more pronounced …


Uncertainty From The Aharonov–Vaidman Identity, Matthew S. Leifer Apr 2023

Uncertainty From The Aharonov–Vaidman Identity, Matthew S. Leifer

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this article, I show how the Aharonov–Vaidman identity A|ψ>=<A⟩|ψ>+ΔA| ψA> can be used to prove relations between the standard deviations of observables in quantum mechanics. In particular, I review how it leads to a more direct and less abstract proof of the Robertson uncertainty relation ΔAΔB≥12|< [A,B]>| than the textbook proof. I discuss the relationship between these two proofs and show how the Cauchy–Schwarz inequality can be derived from the Aharonov–Vaidman identity. I give Aharonov–Vaidman based proofs of the Maccone–Pati uncertainty relations …


Modelling Cell Population Growth, Mahmood Mazarei Apr 2023

Modelling Cell Population Growth, Mahmood Mazarei

Electronic Thesis and Dissertation Repository

The growth of biological matter, e.g., tumor invasion, depends on various factors, mainly the tissue’s mechanical properties, implying elasticity, stiffness, or apparent viscosity. These properties are impacted by the characteristics of the tissue’s extracellular matrix and constituent cells, including, but not limited to, cell membrane stiffness, cell cytoskeleton mechanical properties, and the intensity and distribution of focal adhesions over the cell membrane. To compute and study the mechanical properties of tissues during growth and confluency, a theoretical and computational framework, called CellSim3D, was developed in our group based on a three-dimensional kinetic division model.

In this work, CellSim3D is …


A Highly Charged Topic: Intrinsically Disordered Proteins And Protein Pka Values, Carter J. Wilson Apr 2023

A Highly Charged Topic: Intrinsically Disordered Proteins And Protein Pka Values, Carter J. Wilson

Electronic Thesis and Dissertation Repository

Intrinsically disordered proteins (IDPs) are known not only for their roles in disease but also for their conformational flexibility, which makes them elusive for experimentation. We consider the role played by theory and simulation in resolving important questions pertaining to IDP structure and dynamics, as well as the nature of the charged residues (e.g., glutamate, lysine, etc.) that enrich them. Specifically, we investigated how the deep learning trained AlphaFold2 (AF2) predictor estimates disorder content, revealing both strong performance in relation to conventional approaches and an important relationship between the AF2 confidence metric and IDP dynamics. We also assessed how modern …


The Luminous Power Of Accretion Disks In Active Galactic Nuclei, Imogen Jade Courtney Apr 2023

The Luminous Power Of Accretion Disks In Active Galactic Nuclei, Imogen Jade Courtney

Honors Theses

Active Galactic Nuclei (AGN) are the most luminous long-lived objects in the universe. The phenomenon of the immense luminosities we observe for AGN has interested physicists and astronomers for over a century and continues to fascinate scientists today. The work in this thesis aims to provide an introductory exploration of this phenomenon. This thesis uses a simple model of AGN accretion disks that was developed under the standard disk model proposed by Shakura & Sunyev in 1973 under the simplest assumptions. The model accurately demonstrates how physical parameters, such as the temperature, radiative flux, luminosity, and spectra, scale through an …


High Frequency Radio Communication, Tyler Larsen Apr 2023

High Frequency Radio Communication, Tyler Larsen

Physics Capstone Projects

High frequency radio communication has been the most reliable form of communication for many decades. Over that period, we have learned and experienced times of enhanced signals along with complete radio blackouts. The purpose of this research is to collect and analyze radio signal data to see the evidence of various reasons as to why these phenomena occur. A radio antenna was set up at USU campus to retrieve the signals from beacon networks across the globe that transmit signals every 15 minutes. By tracking a few of these signals we can locate the times of discrepancies in the signals …


The Kp Index And Behavior Of Quiet Periods, Collette Walbeck Apr 2023

The Kp Index And Behavior Of Quiet Periods, Collette Walbeck

Physics Capstone Projects

The Kp-index quantifies the electromagnetic effects in the Earth’s atmosphere and is used in a variety of scientific fields. Higher Kp values tend to be the focus in these fields as they relate to high solar activity and geomagnetic storms. This study aimed to examine the significance, if any, of lower Kp indices. A simple data analysis was performed on continuous sequences of low Kp values, deemed Quiet Periods. Both the daily average of the values and the full set of Kp data were used. A decaying exponential relationship was discovered between the length of these periods and their frequencies …


Is There Causation In Fundamental Physics? New Insights From Process Matrices And Quantum Causal Modelling, Emily Adlam Apr 2023

Is There Causation In Fundamental Physics? New Insights From Process Matrices And Quantum Causal Modelling, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this article we set out to understand the significance of the process matrix formalism and the quantum causal modelling programme for ongoing disputes about the role of causation in fundamental physics. We argue that the process matrix programme has correctly identified a notion of ‘causal order’ which plays an important role in fundamental physics, but this notion is weaker than the common-sense conception of causation because it does not involve asymmetry. We argue that causal order plays an important role in grounding more familiar causal phenomena. Then we apply these conclusions to the causal modelling programme within quantum foundations, …


An Ab Initio Computation Of The Potential Energy Surfaces Of The Dna Bases, Anjali F. Filinovich, Vola Andrianarijaona Apr 2023

An Ab Initio Computation Of The Potential Energy Surfaces Of The Dna Bases, Anjali F. Filinovich, Vola Andrianarijaona

Campus Research Day

The potential energy surfaces of atoms in DNA can be analyzed and compared to show how their bonds break. This DNA potential energy reference data is very useful to understanding how DNA damage occurs, however, a dataset of relevant potential energy surfaces is not available for scientific use. We obtain the potential energy surfaces of various atoms in the four DNA bases adenine, thymine, guanine, and cytosine, by moving an atom in these molecules in three orthogonal directions using ORCA, an ab initio quantum chemistry software. Density functional theory is
used to compute potential energies as an atom is moved, …


Effectiveness Of Multilayer Graded-Z Forms Of Radiation Shielding, Brinley Packer Apr 2023

Effectiveness Of Multilayer Graded-Z Forms Of Radiation Shielding, Brinley Packer

Physics Capstone Projects

This study explored how different forms of radiation shielding were more or less effective than standard single-layer shielding. Beta and gamma radiation sources were used and measured using a Geiger counter to determine how well the various forms of shielding protect against the radiation. The shielding effectiveness of standard homogeneous materials (e.g., graphite, carbon/epoxy composites, aluminum, and lead) of various thicknesses for different radiation sources was measured to provide standards for comparison. Once a basis of effective shielding was established, the study can go into greater depth into how to use shielding materials to be more effective, to better shield …