Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Air Force Institute of Technology

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 391 - 420 of 2678

Full-Text Articles in Physical Sciences and Mathematics

The Wargaming Commodity Course Of Action Automated Analysis Method, William T. Deberry Mar 2021

The Wargaming Commodity Course Of Action Automated Analysis Method, William T. Deberry

Theses and Dissertations

This research presents the Wargaming Commodity Course of Action Automated Analysis Method (WCCAAM), a novel approach to assist wargame commanders in developing and analyzing courses of action (COAs) through semi-automation of the Military Decision Making Process (MDMP). MDMP is a seven-step iterative method that commanders and mission partners follow to build an operational course of action to achieve strategic objectives. MDMP requires time, resources, and coordination – all competing items the commander weighs to make the optimal decision. WCCAAM receives the MDMP's Mission Analysis phase as input, converts the wargame into a directed graph, processes a multi-commodity flow algorithm on …


Multi-Objective Database Queries In Combined Knapsack And Set Covering Problem Domains, Sean A. Mochocki, Gary B. Lamont, Robert C. Leishman, Kyle J. Kauffman Mar 2021

Multi-Objective Database Queries In Combined Knapsack And Set Covering Problem Domains, Sean A. Mochocki, Gary B. Lamont, Robert C. Leishman, Kyle J. Kauffman

Faculty Publications

Database queries are one of the most important functions of a relational database. Users are interested in viewing a variety of data representations, and this may vary based on database purpose and the nature of the stored data. The Air Force Institute of Technology has approximately 100 data logs which will be converted to the standardized Scorpion Data Model format. A relational database is designed to house this data and its associated sensor and non-sensor metadata. Deterministic polynomial-time queries were used to test the performance of this schema against two other schemas, with databases of 100 and 1000 logs of …


Delayed Authentication System For Civilian Satellite, Sean M. Feschak Mar 2021

Delayed Authentication System For Civilian Satellite, Sean M. Feschak

Theses and Dissertations

This thesis presents the feasibility of a Delayed Authentication System (DAS) for civilian satellite navigation (satnav) receivers. In satnav systems, encrypted signal components are transmitted synchronously with civilian components. Hence, the civilian signals can be authenticated by detecting the presence of encrypted signal components within the received signal. To authenticate, a reference station transmits estimated encrypted signal spreading code symbols processed using a high gain antenna. In this thesis, it is shown that a 1-meter diameter dish antenna is adequate to provide a high probability of successful authentication, thereby reducing overall system complexity and cost.


A Comparative Evaluation Of The Fast Optical Pulse Response Of Event-Based Cameras, Tyler J. Brewer Mar 2021

A Comparative Evaluation Of The Fast Optical Pulse Response Of Event-Based Cameras, Tyler J. Brewer

Theses and Dissertations

Event cameras use biologically inspired readout circuit architecture to offer a faster and more efficient method of imaging than traditional frame-based detectors. The asynchronous event reporting circuit timestamps events to 1 microsecond resolution, but latency increases when many pixels are stimulated simultaneously. To characterize this variability, the DAVIS240, DAVIS346, DVXPlorer, and Prophesee Gen3M VGA-CD 1.1 cameras were exposed to single step-function flashes with amplitudes from 9.3-771cd/m2, stimulating from 0.0042-100 of pixels. The Median Absolute Deviation of pixel response times ranged between 0 and 6086µs, increasing with the percent of pixels stimulated (PSP). The number of events generated per …


Error Reduction For The Determination Of Transverse Moduli Of Single-Strand Carbon Fibers Via Atomic Force Microscopy, Joshua D. Frey Mar 2021

Error Reduction For The Determination Of Transverse Moduli Of Single-Strand Carbon Fibers Via Atomic Force Microscopy, Joshua D. Frey

Theses and Dissertations

The transverse modulus of single strand carbon fibers is measured using PeakForce Atomic Force Microscopy - Quantitative Nanomechanical Measurement to less than 5 percent error for 11 types of carbon fiber with longitudinal moduli between 924-231 GPA, including export-controlled fibers. Statistical methods are employed to improve the quality of data to exclude outliers within an measurement and within the sample set. A positive linear correlation between the longitudinal and transverse modulus with an R2=0.76 is found. Pitch-based fibers exhibit lower measurement error than PAN-based fibers, while PAN fibers exhibited no apparent modulus correlation when the Pitch fibers are …


Improving Airfield Pavement Degradation Prediction Skill With Local Climate And Traffic, Evan M. Fortney Mar 2021

Improving Airfield Pavement Degradation Prediction Skill With Local Climate And Traffic, Evan M. Fortney

Theses and Dissertations

Airfield pavements are a critical component of the global transportation network that provide a platform for national defense. Preventative and corrective maintenance activities are founded upon accurate expectations of degradation. The leading pavement management software creates degradation predictions from pavement groups using age as the IV and current state conditions as the DV. For this work, a framework is created and implemented that utilizes a PCR model to build upon accepted practices for degradation modeling to enhance and possibly augment future prediction capabilities. The model was applied to pairs of location and pavement family and reveals several findings: the selected …


Data Driven Investigation Into The Off-Axis Brdf To Develop An Algorithm To Classify Anisotropicity, Anne W. Werkley Mar 2021

Data Driven Investigation Into The Off-Axis Brdf To Develop An Algorithm To Classify Anisotropicity, Anne W. Werkley

Theses and Dissertations

The Bi-directional Reflectance Distribution Function (BRDF) is used to describe reflectances of materials by calculating the ratio of the reflected radiance to the incident irradiance. While it was found that isotropic BRDF microfacet models maintained symmetry about ɸs = π, such symmetry was not maintained about the θs = θi axis, except for close to the specular peak. This led to development of a novel data-driven metric for how isotropic a BRDF measurement is. Research efforts centered around developing an algorithm that could determine material anisotropy without having to fit to models. The algorithm developed here successfully …


Low-Cost Terrestrial Demonstration Of Autonomous Satellite Proximity Operations, Zackary R. Hewitt Mar 2021

Low-Cost Terrestrial Demonstration Of Autonomous Satellite Proximity Operations, Zackary R. Hewitt

Theses and Dissertations

The lack of satellite servicing capabilities significantly impacts the development and operation of current orbital assets. With autonomous solutions under consideration for servicing, the purpose of this research is to build and validate a low-cost hardware platform to expedite the development of autonomous satellite proximity operations. This research aims to bridge the gap between simulation and existing higher fidelity hardware testing with an affordable alternative. An omnidirectional variant of the commercially available TurtleBot3 mobile robot is presented as a 3-DOF testbed that demonstrates a satellite servicing inspection scenario. Reference trajectories for the scenario are generated via optimal control using the …


Comparison Of Conic Ray Tracing For Occlusion Determination On 3d Point Cloud Data, Henry Cho Mar 2021

Comparison Of Conic Ray Tracing For Occlusion Determination On 3d Point Cloud Data, Henry Cho

Theses and Dissertations

The US Air Force has been increasing the use of automation in its weapon systems to include the remotely piloted aircraft (RPA) platforms. The RPA career field has had issues with poor pilot retention due to job stressors. For example, RPA operators spend a lot of time and attention surveilling a suspect on the ground for many hours, so adding automation to this activity could help improve pilot retention. The research problem in this thesis attempted to automate the process of observing a ground target. This thesis presents a method termed conic ray tracing for determining visibility and occlusion of …


Automated Network Exploitation Utilizing Bayesian Decision Networks, Graeme M. Roberts Mar 2021

Automated Network Exploitation Utilizing Bayesian Decision Networks, Graeme M. Roberts

Theses and Dissertations

Computer Network Exploitation (CNE) is the process of using tactics and techniques to penetrate computer systems and networks in order to achieve desired effects. It is currently a manual process requiring significant experience and time that are in limited supply. This thesis presents the Automated Network Discovery and Exploitation System (ANDES) which demonstrates that it is feasible to automate the CNE process. The uniqueness of ANDES is the use of Bayesian decision networks to represent the CNE domain and subject matter expert knowledge. ANDES conducts multiple execution cycles, which build upon previous action results. Cycles begin by modeling the current …


Amplitude Estimation For The Large Clutter Discrete Removal Algorithm, Hannah Gjermo Chomitz Mar 2021

Amplitude Estimation For The Large Clutter Discrete Removal Algorithm, Hannah Gjermo Chomitz

Theses and Dissertations

A large clutter discrete (LCD) is spectrally bright localized clutter that can cause a false alarm or missed target detection in space-time adaptive processing (STAP) radar data. For passive bistatic STAP, the four step LCD removal (LCDR) algorithm estimates the spatial/Doppler frequency and complex amplitude of the LCD and then removes it from the data. Once the LCD is removed from the data, homogeneous clutter suppression techniques can be used to process the data and search for targets. This research focuses on reducing the complexity of estimating the LCDs complex amplitude. This research proposes a method that directly solves for …


Independently Controlling Stochastic Field Realization Magnitude And Phase Statistics For The Construction Of Novel Partially Coherent Sources, Milo W. Hyde Iv Feb 2021

Independently Controlling Stochastic Field Realization Magnitude And Phase Statistics For The Construction Of Novel Partially Coherent Sources, Milo W. Hyde Iv

Faculty Publications

In this paper, we present a method to independently control the field and irradiance statistics of a partially coherent beam. Prior techniques focus on generating optical field realizations whose ensemble-averaged autocorrelation matches a specified second-order field moment known as the cross-spectral density (CSD) function. Since optical field realizations are assumed to obey Gaussian statistics, these methods do not consider the irradiance moments, as they, by the Gaussian moment theorem, are completely determined by the field’s first and second moments. Our work, by including control over the irradiance statistics (in addition to the CSD function), expands existing synthesis approaches and allows …


Photoinduced Trapping Of Charge At Sulfur Vacancies And Copper Ions In Photorefractive Sn2P2S6 Crystals, Timothy D. Gustafson, Eric M. Golden, Elizabeth M. Scherrer, Nancy C. Giles, A. A. Grabar, Sergey A. Basun, Jonathan E. Slagle [*], Larry E. Halliburton Feb 2021

Photoinduced Trapping Of Charge At Sulfur Vacancies And Copper Ions In Photorefractive Sn2P2S6 Crystals, Timothy D. Gustafson, Eric M. Golden, Elizabeth M. Scherrer, Nancy C. Giles, A. A. Grabar, Sergey A. Basun, Jonathan E. Slagle [*], Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) is used to monitor photoinduced changes in the charge states of sulfur vacancies and Cu ions in tin hypothiodiphosphate. A Sn2P2S6 crystal containing Cu+ (3d10) ions at Sn2+ sites was grown by the chemical vapor transport method. Doubly ionized sulfur vacancies (V2+S) are also present in the as-grown crystal (where they serve as charge compensators for the Cu+ ions). For temperatures below 70 K, exposure to 532 or 633 nm laser light produces stable Cu2+ (3d9) ions, as electrons move from Cu+ ions to …


Zynq System-On-Chip Dma Messaging For Processor Monitoring, Daniel F. Koranek, Douglas D. Hodson, Scott R. Graham Feb 2021

Zynq System-On-Chip Dma Messaging For Processor Monitoring, Daniel F. Koranek, Douglas D. Hodson, Scott R. Graham

Faculty Publications

Xilinx Zynq-7000 System-on-Chip architectures combine an ARM Cortex-A9 core with an FPGA fabric. One benefit of this hybrid architecture is that it allows fast prototyping of designs where the security of either the processing system (PS) is monitored by the programmable logic (PL) or vice versa. The choice of implementing a design in the PS or PL is driven by cost-to-benefit analysis across many factors. This effort examines the design process required to construct security monitoring designs that use both the PS and PL. For background, this effort reviews similar security monitoring projects. For the effort, a PL peripheral was …


On-Chip Silicon Photonic Controllable 2 × 2 Four-Mode Waveguide Switch, Cao Dung Truong, Duy Nguyen Thi Hang, Hengky Chandrahalim, Minh Tuan Trinh Jan 2021

On-Chip Silicon Photonic Controllable 2 × 2 Four-Mode Waveguide Switch, Cao Dung Truong, Duy Nguyen Thi Hang, Hengky Chandrahalim, Minh Tuan Trinh

Faculty Publications

Multimode optical switch is a key component of mode division multiplexing in modern high-speed optical signal processing. In this paper, we introduce for the first time a novel 2 × 2 multimode switch design and demonstrate in the proof-of-concept. The device composes of four Y-multijunctions and 2 × 2 multimode interference coupler using silicon-on-insulator material with four controllable phase shifters. The shifters operate using thermo-optic effects utilizing Ti heaters enabling simultaneous switching of the optical signal between the output ports on four quasi-transverse electric modes with the electric power consumption is in order of 22.5 mW and the switching time …


Acceleration Of Boltzmann Collision Integral Calculation Using Machine Learning, Ian Holloway, Aihua W. Wood, Alexander Alekseenko Jan 2021

Acceleration Of Boltzmann Collision Integral Calculation Using Machine Learning, Ian Holloway, Aihua W. Wood, Alexander Alekseenko

Faculty Publications

The Boltzmann equation is essential to the accurate modeling of rarefied gases. Unfortunately, traditional numerical solvers for this equation are too computationally expensive for many practical applications. With modern interest in hypersonic flight and plasma flows, to which the Boltzmann equation is relevant, there would be immediate value in an efficient simulation method. The collision integral component of the equation is the main contributor of the large complexity. A plethora of new mathematical and numerical approaches have been proposed in an effort to reduce the computational cost of solving the Boltzmann collision integral, yet it still remains prohibitively expensive for …


A Radial Basis Function Finite Difference Scheme For The Benjamin–Ono Equation, Benjamin F. Akers, Tony Liu, Jonah A. Reeger Jan 2021

A Radial Basis Function Finite Difference Scheme For The Benjamin–Ono Equation, Benjamin F. Akers, Tony Liu, Jonah A. Reeger

Faculty Publications

A radial basis function-finite differencing (RBF-FD) scheme was applied to the initial value problem of the Benjamin–Ono equation. The Benjamin–Ono equation has traveling wave solutions with algebraic decay and a nonlocal pseudo-differential operator, the Hilbert transform. When posed on ℝ, the former makes Fourier collocation a poor discretization choice; the latter is challenging for any local method. We develop an RBF-FD approximation of the Hilbert transform, and discuss the challenges of implementing this and other pseudo-differential operators on unstructured grids. Numerical examples, simulation costs, convergence rates, and generalizations of this method are all discussed.


Modeling And Simulation Techniques Used In High Strain Rate Projectile Impact, Derek G. Spear, Anthony N. Palazotto, Ryan A. Kemnitz Jan 2021

Modeling And Simulation Techniques Used In High Strain Rate Projectile Impact, Derek G. Spear, Anthony N. Palazotto, Ryan A. Kemnitz

Faculty Publications

A series of computational models and simulations were conducted for determining the dynamic responses of a solid metal projectile impacting a target under a prescribed high strain rate loading scenario in three-dimensional space. The focus of this study was placed on two different modeling techniques within finite element analysis available in the Abaqus software suite. The first analysis technique relied heavily on more traditional Lagrangian analysis methods utilizing a fixed mesh, while still taking advantage of the finite difference integration present under the explicit analysis approach. A symmetry reduced model using the Lagrangian coordinate system was also developed for comparison …


Extending Critical Infrastructure Element Longevity Using Constellation-Based Id Verification, Christopher M. Rondeau, Michael A. Temple, J. Addison Betances, Christine M. Schubert Kabban Jan 2021

Extending Critical Infrastructure Element Longevity Using Constellation-Based Id Verification, Christopher M. Rondeau, Michael A. Temple, J. Addison Betances, Christine M. Schubert Kabban

Faculty Publications

This work supports a technical cradle-to-grave protection strategy aimed at extending the useful lifespan of Critical Infrastructure (CI) elements. This is done by improving mid-life operational protection measures through integration of reliable physical (PHY) layer security mechanisms. The goal is to improve existing protection that is heavily reliant on higher-layer mechanisms that are commonly targeted by cyberattack. Relative to prior device ID discrimination works, results herein reinforce the exploitability of constellation-based PHY layer features and the ability for those features to be practically implemented to enhance CI security. Prior work is extended by formalizing a device ID verification process that …


A Learning Curve Model Accounting For The Flattening Effect In Production Cycles, Evan R. Boone, John J. Elshaw, Clay M. Koschnick, Jonathan D. Ritschel, Adedeji B. Badiru Jan 2021

A Learning Curve Model Accounting For The Flattening Effect In Production Cycles, Evan R. Boone, John J. Elshaw, Clay M. Koschnick, Jonathan D. Ritschel, Adedeji B. Badiru

Faculty Publications

We investigate production cost estimates to identify and model modifications to a prescribed learning curve. Our new model examines the learning rate as a decreasing function over time as opposed to a constant rate that is frequently used. The purpose of this research is to determine whether a new learning curve model could be implemented to reduce the error in cost estimates for production processes. A new model was created that mathematically allows for a “flattening effect,” which typically occurs later in the production process. This model was then compared to Wright’s learning curve, which is a popular method used …


A Review Of Energy-For-Water Data In Energy-Water Nexus Publications, Christopher M. Chini, Lauren E. Excell, Ashlynn S. Stillwell Jan 2021

A Review Of Energy-For-Water Data In Energy-Water Nexus Publications, Christopher M. Chini, Lauren E. Excell, Ashlynn S. Stillwell

Faculty Publications

Published literature on the energy-water nexus continues to increase, yet much of the supporting data, particularly regarding energy-for-water, remains obscure or inaccessible. We perform a systematic review of literature that describes the primary energy and electricity demands for drinking water and wastewater systems in urban environments. This review provides an analysis of the underlying data and other properties of over 170 published studies by systematically creating metadata on each study. Over 45% of the evaluated studies utilized primary data sources (data collected directly from utilities), potentially enabling large-scale data sharing and a more comprehensive understanding of global water-related energy demand. …


Agile Software Development: Creating A Cost Of Delay Framework For Air Force Software Factories, J. Goljan, Jonathan D. Ritschel, Scott Drylie, Edward D. White Jan 2021

Agile Software Development: Creating A Cost Of Delay Framework For Air Force Software Factories, J. Goljan, Jonathan D. Ritschel, Scott Drylie, Edward D. White

Faculty Publications

The Air Force software development environment is experiencing a paradigm shift. The 2019 Defense Innovation Board concluded that speed and cycle time must become the most important software metrics if the US military is to maintain its advantage over adversaries.1 This article proposes utilizing a cost-o­f-d­elay (CoD) framework to prioritize projects toward optimizing readiness. Cost-­of-d­elay is defined as the economic impact resulting from a delaying product delivery or, said another way, opportunity cost. In principle, CoD assesses the negative impacts resulting from changes to the priority of a project.


Arctic Observations And Numerical Simulations Of Surface Wind Effects On Multi-Angle Snowflake Camera Measurements, Kyle E. Fitch, Chaoxun Hang, Ahmad Talaei, Timothy Garrett Jan 2021

Arctic Observations And Numerical Simulations Of Surface Wind Effects On Multi-Angle Snowflake Camera Measurements, Kyle E. Fitch, Chaoxun Hang, Ahmad Talaei, Timothy Garrett

Faculty Publications

Ground-based measurements of frozen precipitation are heavily influenced by interactions of surface winds with gauge-shield geometry. The Multi-Angle Snowflake Camera (MASC), which photographs hydrometeors in free-fall from three different angles while simultaneously measuring their fall speed, has been used in the field at multiple midlatitude and polar locations both with and without wind shielding. Here, we present an analysis of Arctic field observations – with and without a Belfort double Alter shield – and compare the results to computational fluid dynamics (CFD) simulations of the airflow and corresponding particle trajectories around the unshielded MASC. MASC-measured fall speeds compare well with …


The Traded Water Footprint Of Global Energy From 2010 To 2018, Christopher M. Chini, Rebecca A. M. Peer Jan 2021

The Traded Water Footprint Of Global Energy From 2010 To 2018, Christopher M. Chini, Rebecca A. M. Peer

Faculty Publications

The energy-water nexus describes the requirement of water-for-energy and energy-for-water. The consumption of water in the production and generation of energy resources is also deemed virtual water. Pairing the virtual water estimates for energy with international trade data creates a virtual water trade network, facilitating analysis of global water resources management. In this database, we identify the virtual water footprints for the trade of eleven different energy commodities including fossil fuels, biomass, and electricity. Additionally, we provide the necessary scripts for downloading and pairing trade data with the virtual water footprints to create a virtual water trade network. The resulting …


Electro-Optic Satellite Constellation Design Using Multi-Objective Genetic Algorithm, Yasin Tamer Dec 2020

Electro-Optic Satellite Constellation Design Using Multi-Objective Genetic Algorithm, Yasin Tamer

Theses and Dissertations

Satellite constellation design is a complex, highly constrained, and multidisciplinary problem. Unless optimization tools are used, tradeoffs must be conducted at the subsystem level resulting in feasible, but not necessarily optimal, system designs. As satellite technology advances, new methods to optimize the system objectives are developed. This study is based on the development of a representative regional remote sensing constellation design. This thesis analyses the design process of an electrooptic satellite constellation with regional coverage considerations using system-level optimization tools. A multi objective genetic algorithm method is used to optimize the constellation design by utilizing MATLAB and STK integration. Cost, …


3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


Deep Learning-Based, Passive Fault Tolerant Control Facilitated By A Taxonomy Of Cyber-Attack Effects, Dean C. Wardell Dec 2020

Deep Learning-Based, Passive Fault Tolerant Control Facilitated By A Taxonomy Of Cyber-Attack Effects, Dean C. Wardell

Theses and Dissertations

In the interest of improving the resilience of cyber-physical control systems to better operate in the presence of various cyber-attacks and/or faults, this dissertation presents a novel controller design based on deep-learning networks. This research lays out a controller design that does not rely on fault or cyber-attack detection. Being passive, the controller’s routine operating process is to take in data from the various components of the physical system, holistically assess the state of the physical system using deep-learning networks and decide the subsequent round of commands from the controller. This use of deep-learning methods in passive fault tolerant control …


Engaging Empirical Dynamic Modeling To Detect Intrusions In Cyber-Physical Systems, David R. Crow, Scott R. Graham, Brett J. Borghetti, Patrick J. Sweeney Dec 2020

Engaging Empirical Dynamic Modeling To Detect Intrusions In Cyber-Physical Systems, David R. Crow, Scott R. Graham, Brett J. Borghetti, Patrick J. Sweeney

Faculty Publications

Modern cyber-physical systems require effective intrusion detection systems to ensure adequate critical infrastructure protection. Developing an intrusion detection capability requires an understanding of the behavior of a cyber-physical system and causality of its components. Such an understanding enables the characterization of normal behavior and the identification and reporting of anomalous behavior. This chapter explores a relatively new time series analysis technique, empirical dynamic modeling, that can contribute to system understanding. Specifically, it examines if the technique can adequately describe causality in cyber-physical systems and provides insights into it serving as a foundation for intrusion detection.


Spectroscopic Diagnostics For Supersonic Air Microwave Discharges, James E. Caplinger Dec 2020

Spectroscopic Diagnostics For Supersonic Air Microwave Discharges, James E. Caplinger

Theses and Dissertations

Optical Emission Spectroscopy (OES) is an increasingly relevant technique in plasma diagnostics due to its inherent non-invasive nature and simple application relative to other popular techniques. In this work, common OES techniques are combined with novel methods, developed here, in an effort to provide comprehensive OES techniques for stationary and supersonic air microwave discharges. To this end, a detailed collisional-radiative model for strong atomic oxygen lines has been developed and used to identify the importance of often overlooked mechanisms including cascade emission and metastable excitation. Using these results, a combined argon actinometry technique was developed which makes use of the …


An Integrated Assessment Of The Global Virtual Water Trade Network Of Energy, Rebecca A. M. Peer, Christopher M. Chini Nov 2020

An Integrated Assessment Of The Global Virtual Water Trade Network Of Energy, Rebecca A. M. Peer, Christopher M. Chini

Faculty Publications

The global trade of energy allows for the distribution of the world's collective energy resources and, therefore, an increase in energy access. However, this network of trade also generates a network of virtually traded resources that have been used to produce energy commodities. An integrated database of energy trade water footprints is necessary to capture interrelated energy and water concerns of a globalized economy,and is also motivated by current climate and population trends. Here, we quantify and present the virtual water embedded in energy trade across the globe from 2012 to 2018, building on previous water footprinting and energy virtual …