Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electronic Theses and Dissertations

Discipline
Institution
Keyword
Publication Year
File Type

Articles 2491 - 2520 of 4195

Full-Text Articles in Physical Sciences and Mathematics

Complex-Systems Approach To Simulating The Sea Urchin Ecology, Graham Andrew Morehead May 2014

Complex-Systems Approach To Simulating The Sea Urchin Ecology, Graham Andrew Morehead

Electronic Theses and Dissertations

Stocks of the native sea urchin (Strongylocentrotus droebachiensis) dropped dramatically during the peak of the urchin fishery in the early 1990’s and have not recovered. The current regulatory regime is based on analytic population models and two monolithic zones. Analytic models are insufficiently complex to capture many features that cause demise or survival of an urchin population. Scale, or granularity size, is too coarse. In contrast, a complex-systems-based model is able to capture these features. Presented here is a fine-scale simulation of a sea urchin fishery in the Gulf of Maine which behaves like a complex system, i.e. exhibits patchiness …


Crowdsourcing Water Quality Data Using The Iphone Camera, Thomas Leeuw May 2014

Crowdsourcing Water Quality Data Using The Iphone Camera, Thomas Leeuw

Electronic Theses and Dissertations

The ubiquity and advanced computing power of smartphones make them a potential tool for environmental monitoring on a global scale. In an attempt to tap this resource, a water quality application (HydroColor) was developed. Hydro- Color uses the iPhone’s digital color camera as a primitive three-band radiometer. Using three images taken by the user, HydroColor calculates the remote sensing reflectance in the red, green, and blue color channels of the camera. The absolute or relative reflectance between channels can be used to obtain estimates of chlorophyll, turbidity, suspended particle material, and the backscattering coefficient. In the future, HydroColor will be …


Measurement Of Low Temperature Thermal Properties Of Microcalorimeters Using Johnson Noise Thermometry, Dain Bassett Mar 2014

Measurement Of Low Temperature Thermal Properties Of Microcalorimeters Using Johnson Noise Thermometry, Dain Bassett

Electronic Theses and Dissertations

Calorimetric measurments and thermal transport measurments through a-SixNy suspended membranes have been performed to further the understanding of low temperature thin film thermal transport, and understand the interesting physics present within an amorphous dielectric material. The thermal properties of several calorimeters have been measured to understand the geometric dependence on transport phenomenon. We analyze and compare our results with observations of previous measurements, and with those indicating quantum limited thermal transport. We see strong indications of changes to the physical mechanism transporting heat through these materials as temperature changes from 50 mK to 2 K. We have …


Photoassisted Access To New Polyheterocycles, Teresa M. Cowger Mar 2014

Photoassisted Access To New Polyheterocycles, Teresa M. Cowger

Electronic Theses and Dissertations

Photoassisted diversity-oriented synthesis holds great promise in its ability to provide rapid access to complex and diverse molecular scaffolds. As it stands, while photochemical techniques have this potential, their implementation in the field of synthetic organic chemistry is very limited. The main goal of this project was to utilize photochemically assisted techniques in the synthesis of a variety of novel polyheterocycles.

Initially, we explored the how the strain installed in these polycycles could be harnessed to trigger cationic rearrangements in the framework of the system. This was achieved via the high yield and rapid assembly of a highly strained system …


Tiling Properties Of Spectra Of Measures, John Haussermann Jan 2014

Tiling Properties Of Spectra Of Measures, John Haussermann

Electronic Theses and Dissertations

We investigate tiling properties of spectra of measures, i.e., sets Λ in R such that {e 2πiλx : λ ∈ Λ} forms an orthogonal basis in L 2 (µ), where µ is some finite Borel measure on R. Such measures include Lebesgue measure on bounded Borel subsets, finite atomic measures and some fractal Hausdorff measures. We show that various classes of such spectra of measures have translational tiling properties. This lead to some surprizing tiling properties for spectra of fractal measures, the existence of complementing sets and spectra for finite sets with the Coven-Meyerowitz property, the existence of complementing Hadamard …


Electronic Properties And Atomic Scale Microscopy Of Two Dimensional Materials: Graphene And Molybdenum Disulfide, Jyoti Katoch Jan 2014

Electronic Properties And Atomic Scale Microscopy Of Two Dimensional Materials: Graphene And Molybdenum Disulfide, Jyoti Katoch

Electronic Theses and Dissertations

Novel two dimensional nanoscale materials like graphene and metal dichalcogenides (MX2) have attracted the attention of the scientific community, due to their rich physics and wide range of potential applications. It has been shown that novel graphene based transparent conductors and radiofrequency transistors are competitive with the existing technologies. Graphene’s properties are influenced sensitively by adsorbates and substrates. As such not surprisingly, physical properties of graphene are found to have a large variability, which cannot be controlled at the synthesis level, reducing the utility of graphene. As a part of my doctorate dissertation, I have developed atomic hydrogen as a …


Comparison Of Second Order Conformal Symplectic Schemes With Linear Stability Analysis, Dwayne Floyd Jan 2014

Comparison Of Second Order Conformal Symplectic Schemes With Linear Stability Analysis, Dwayne Floyd

Electronic Theses and Dissertations

Numerical methods for solving linearly damped Hamiltonian ordinary differential equations are analyzed and compared. The methods are constructed from the well-known Störmer-Verlet and implicit midpoint methods. The structure preservation properties of each method are shown analytically and numerically. Each method is shown to preserve a symplectic form up to a constant and are therefore conformal symplectic integrators, with each method shown to accurately preserve the rate of momentum dissipation. An analytical linear stability analysis is completed for each method, establishing thresholds between the value of the damping coefficient and the step-size that ensure stability. The methods are all second order …


Synthesis Of Fluorescent Molecules And Their Applications As Viscosity Sensors, Metal Ion Indicators, And Near-Infrared Probes, Mengyuan Wang Jan 2014

Synthesis Of Fluorescent Molecules And Their Applications As Viscosity Sensors, Metal Ion Indicators, And Near-Infrared Probes, Mengyuan Wang

Electronic Theses and Dissertations

The primary focus of this dissertation is the development of novel fluorescent near-infrared molecules for various applications. In Chapter 1, a compound dU-BZ synthesized via Sonogashira coupling reaction methodology is described. A deoxyuridine building block was introduced to enhance hydrophilic properties and reduce toxicity, while an alkynylated benzothiazolium dye was incorporated for near-IR emission and reduce photodamage and phototoxicity that is characteristic of common fluorphores that are excited by UV or visible light. A 30-fold enhancement of fluorescence intensity of dU-BZ was achieved in a viscous environment. Values of fluorescence quantum yields in 99% glycerol/1% methanol (v/v) of varying temperature …


Self-Heating Control Of Edge Emitting And Vertical Cavity Surface Emitting Lasers, Yu Zhang Jan 2014

Self-Heating Control Of Edge Emitting And Vertical Cavity Surface Emitting Lasers, Yu Zhang

Electronic Theses and Dissertations

Self-heating leads to temperature rise of laser diode and limits the output power, efficiency and modulation bandwidth due to increased loss and decreased differential gain. The main heat sources in laser diode during continuous wave operation are Joule heating and free carrier absorption loss. To control device self-heating, the epi structure needs to be designed with low electrical resistance and low absorption loss, while the heat flux must spread out of the device efficiently. This dissertation presents the control of self-heating of both edge emitting laser diodes and vertical cavity surface emitting lasers (VCSELs). For the 980nm high power edge …


Distribution Of Laser Induced Heating In Multi-Component Chalcogenide Glass And Its Associated Effects, Laura Sisken Jan 2014

Distribution Of Laser Induced Heating In Multi-Component Chalcogenide Glass And Its Associated Effects, Laura Sisken

Electronic Theses and Dissertations

Chalcogenide glasses are well known to have good transparency into the infrared spectrum. These glasses though tend to have low thresholds as compared to oxide glasses for photo-induced changes and thermally-induced changes. Material modification such as photo-induced darkening, bleaching, refractive index change, densification or expansion, ablation of crystallization have been demonstrated, and are typically induced by a thermal furnace-based heat treatment, an optical source such as a laser, or a combination of photo-thermal interactions. Solely employing laser-based heating has an advantage over a furnace, since one has the potential to be able to spatially modify the materials properties with much …


Highly-Sensitive Stoichiometric Analysis Of Yag Ceramics Using Laser-Induced Breakdown Spectroscopy (Libs), Jahromi, Ali Kazemi Jan 2014

Highly-Sensitive Stoichiometric Analysis Of Yag Ceramics Using Laser-Induced Breakdown Spectroscopy (Libs), Jahromi, Ali Kazemi

Electronic Theses and Dissertations

Transparent ceramics are an important class of optical materials with applications in high-strength windows, radiation detectors and high-power lasers. Despite the many successful developments of the past decades, their challenging fabrication still needs to be perfected to achieve a better consistency in optical quality. In particular, ternary phase materials such as Yttrium Aluminum Garnet (YAG, Y3Al5O12), a long standing high-power laser host, require a precise control of stoichiometry, often beyond the precision of current analytical techniques, in order to reduce scattering losses and the presence of deleterious point defects. This work explores the potential of Laser-Induced Breakdown Spectroscopy (LIBS) for …


Automatic 3d Human Modeling: An Initial Stage Towards 2-Way Inside Interaction In Mixed Reality, Yiyan Xiong Jan 2014

Automatic 3d Human Modeling: An Initial Stage Towards 2-Way Inside Interaction In Mixed Reality, Yiyan Xiong

Electronic Theses and Dissertations

3D human models play an important role in computer graphics applications from a wide range of domains, including education, entertainment, medical care simulation and military training. In many situations, we want the 3D model to have a visual appearance that matches that of a specific living person and to be able to be controlled by that person in a natural manner. Among other uses, this approach supports the notion of human surrogacy, where the virtual counterpart provides a remote presence for the human who controls the virtual character's behavior. In this dissertation, a human modeling pipeline is proposed for the …


High Resolution Time-Resolved Imaging System In The Vacuum Ultraviolet Region, Yuseong Jang Jan 2014

High Resolution Time-Resolved Imaging System In The Vacuum Ultraviolet Region, Yuseong Jang

Electronic Theses and Dissertations

High-power debris-free vacuum ultraviolet (VUV) light sources have applications in several scientific and engineering areas, such as high volume manufacturing lithography and inspection tools in the semiconductor industry, as well as other applications in material processing and photochemistry. For the past decades, the semiconductor industry has been driven by what is called "Moore's Law". The entire semiconductor industry relies on this rule, which requires chip makers to pack transistors more tightly with every new generation of chips, shrinking the size of transistors. The ability to solve roadmap challenges is, at least partly, proportional to our ability to measure them. The …


High Performance Three-Dimensional Display Based On Polymer-Stabilized Blue Phase Liquid Crystal, Yifan Liu Jan 2014

High Performance Three-Dimensional Display Based On Polymer-Stabilized Blue Phase Liquid Crystal, Yifan Liu

Electronic Theses and Dissertations

Autostereoscopic 2D/3D (two-dimension/three-dimension) switchable display has been attracting great interest in research and practical applications for several years. Among different autostereoscopic solutions, direction-multiplexed 3D displays based on microlens array or parallax barrier are viewed as the most promising candidates, due to their compatibility with conventional 2D display technologies. These 2D/3D switchable display system designs rely on fast switching display panels and photonics devices, including adaptive focus microlens array and switchable slit array. Polymer-stabilized blue phase liquid crystal (PS-BPLC) material provides a possible solution to meet the aforementioned fast response time requirement. However, present display and photonic devices based on blue …


Intelligent Selection Techniques For Virtual Environments, Jeffrey Cashion Jan 2014

Intelligent Selection Techniques For Virtual Environments, Jeffrey Cashion

Electronic Theses and Dissertations

Selection in 3D games and simulations is a well-studied problem. Many techniques have been created to address many of the typical scenarios a user could experience. For any single scenario with consistent conditions, there is likely a technique which is well suited. If there isn't, then there is an opportunity for one to be created to best suit the expected conditions of that new scenario. It is critical that the user be given an appropriate technique to interact with their environment. Without it, the entire experience is at risk of becoming burdensome and not enjoyable. With all of the different …


Injection-Locked Vertical Cavity Surface Emitting Lasers (Vcsels) For Optical Arbitrary Waveform Generation, Sharad Bhooplapur Jan 2014

Injection-Locked Vertical Cavity Surface Emitting Lasers (Vcsels) For Optical Arbitrary Waveform Generation, Sharad Bhooplapur

Electronic Theses and Dissertations

Complex optical pulse shapes are typically generated from ultrashort laser pulses by manipulating the optical spectrum of the input pulses. This generates complex but periodic time-domain waveforms. Optical Arbitrary Waveform Generation (OAWG) builds on the techniques of ultrashort pulse-shaping, with the goal of making non-periodic, truly arbitrary optical waveforms. Some applications of OAWG are coherently controlling chemical reactions on a femtosecond time scale, improving the performance of LADAR systems, high-capacity optical telecommunications and ultra wideband signals processing. In this work, an array of Vertical Cavity Surface Emitting Lasers (VCSELs) are used as modulators, by injection-locking each VCSEL to an individual …


Degradation Of Hydrazine And Monomethylhydrazine For Fuel Waste Streams Using Alpha-Ketoglutaric Acid, Carolina Franco Jan 2014

Degradation Of Hydrazine And Monomethylhydrazine For Fuel Waste Streams Using Alpha-Ketoglutaric Acid, Carolina Franco

Electronic Theses and Dissertations

Alpha-ketoglutaric acid (AKGA) is an organic acid important for the metabolism of essential amino acids as well as for the transfer of cellular energy. It is a precursor of glutamic acid which is produced by the human body during the Krebs Cycle. AKGA has a specific industrial interest as it can be taken as a dietary supplement and is also widely used as a building block in chemical synthesis. Collectively termed as hydrazine (HZs), hydrazine (HZ) and monomethylhydrazine (MMH) are hypergolic fuels that do not need an ignition source to burn. Because of the particular HZs' characteristics the National Aeronautics …


Integrated Remote Sensing And Forecasting Of Regional Terrestrial Precipitation With Global Nonlinear And Nonstationary Teleconnection Signals Using Wavelet Analysis, Lee Mullon Jan 2014

Integrated Remote Sensing And Forecasting Of Regional Terrestrial Precipitation With Global Nonlinear And Nonstationary Teleconnection Signals Using Wavelet Analysis, Lee Mullon

Electronic Theses and Dissertations

Global sea surface temperature (SST) anomalies have a demonstrable effect on terrestrial climate dynamics throughout the continental U.S. SST variations have been correlated with greenness (vegetation densities) and precipitation via ocean-atmospheric interactions known as climate teleconnections. Prior research has demonstrated that teleconnections can be used for climate prediction across a wide region at sub-continental scales. Yet these studies tend to have large uncertainties in estimates by utilizing simple linear analyses to examine chaotic teleconnection relationships. Still, non-stationary signals exist, making teleconnection identification difficult at the local scale. Part 1 of this research establishes short-term (10-year), linear and non-stationary teleconnection signals …


Optical And Magnetic Properties Of Nanostructures, Neha Nayyar Jan 2014

Optical And Magnetic Properties Of Nanostructures, Neha Nayyar

Electronic Theses and Dissertations

In this thesis, Density Functional Theory and Time-Dependent Density-Functional Theory approaches are applied to study the optical and magnetic properties of several types of nanostructures. In studies of the optical properties we mainly focused on the plasmonic and excitonic effects in pure and transition metal-doped noble metal nanochains and their conglomerates. In the case of pure noble metal chains, it was found that the (collective) plasmon mode is pronounceable when the number of atoms in the chain is larger than 5. The plasmon energy decreases with further with increasing number of atoms (N) and is almost N-independent when N is …


On-Chip Optical Stabilization Of High-Speed Mode-Locked Quantum Dot Lasers For Next Generation Optical Networks, Abhijeet Ardey Jan 2014

On-Chip Optical Stabilization Of High-Speed Mode-Locked Quantum Dot Lasers For Next Generation Optical Networks, Abhijeet Ardey

Electronic Theses and Dissertations

Monolithic passively mode-locked colliding pulse semiconductor lasers generating pico- to sub-picosecond terahertz optical pulse trains are promising sources for future applications in ultra-high speed data transmission systems and optical measurements. However, in the absence of external synchronization, these passively mode-locked lasers suffer from large amplitude and timing jitter instabilities resulting in broad comb linewidths, which precludes many applications in the field of coherent communications and signal processing where a much narrower frequency line set is needed. In this dissertation, a novel quantum dot based coupled cavity laser is presented, where for the first time, four-wave mixing (FWM) in the monolithically …


Novel Developments On The Extraction And Analysis Of Polycyclic Aromatic Hydrocarbons In Environmental Samples, Walter Wilson Jan 2014

Novel Developments On The Extraction And Analysis Of Polycyclic Aromatic Hydrocarbons In Environmental Samples, Walter Wilson

Electronic Theses and Dissertations

This dissertation focuses on the development of analytical methodology for the analysis of polycyclic aromatic hydrocarbons (PAHs) in water samples. Chemical analysis of PAHs is of great environmental and toxicological importance. Many of them are highly suspect as etiological agents in human cancer. Among the hundreds of PAHs present in the environment, the U.S. Environmental Protection Agency (EPA) lists sixteen as "Consent Decree" priority pollutants. Their routine monitoring in environmental samples is recommended to prevent human contamination risks. A primary route of human exposure to PAHs is the ingestion of contaminated water. The rather low PAH concentrations in water samples …


Terahertz And Sub-Terahertz Tunable Resonant Detectors Based On Excitation Of Two Dimensional Plasmons In Ingaas/Inp Hemts, Esfahani, Nima Nader Jan 2014

Terahertz And Sub-Terahertz Tunable Resonant Detectors Based On Excitation Of Two Dimensional Plasmons In Ingaas/Inp Hemts, Esfahani, Nima Nader

Electronic Theses and Dissertations

Plasmons can be generated in the two dimensional electron gas (2DEG) of grating-gated high electron mobility transistors (HEMTs). The grating-gate serves dual purposes, namely to provide the required wavevector to compensate for the momentum mismatch between the free-space radiation and 2D-plasmons, and to tune the 2DEG sheet charge density. Since the plasmon frequency at a given wavevector depends on the sheet charge density, a gate bias can shift the plasmon resonance. In some cases, plasmon generation results in a resonant change in channel conductance which allows a properly designed grating-gated HEMT to be used as a voltage-tunable resonant detector or …


Sketchart: A Pen-Based Tool For Chart Generation And Interaction., Andres Vargas Gonzalez Jan 2014

Sketchart: A Pen-Based Tool For Chart Generation And Interaction., Andres Vargas Gonzalez

Electronic Theses and Dissertations

It has been shown that representing data with the right visualization increases the understanding of qualitative and quantitative information encoded in documents. However, current tools for generating such visualizations involve the use of traditional WIMP techniques, which perhaps makes free interaction and direct manipulation of the content harder. In this thesis, we present a pen-based prototype for data visualization using 10 different types of bar based charts. The prototype lets users sketch a chart and interact with the information once the drawing is identified. The prototype's user interface consists of an area to sketch and touch based elements that will …


Photonic Filtering For Applications In Microwave Generation And Metrology, Marcus Bagnell Jan 2014

Photonic Filtering For Applications In Microwave Generation And Metrology, Marcus Bagnell

Electronic Theses and Dissertations

This work uses the photonic filtering properties of Fabry-Perot etalons to show improvements in the electrical signals created upon photodetection of the optical signal. First, a method of delay measurement is described which uses multi-heterodyne detection to find correlations in white light signals at 20 km of delay to sub millimeter resolution. By filtering incoming white light with a Fabry-Perot etalon, the pseudo periodic signal is suitable for measurement by combining and photodetecting it with an optical frequency comb. In this way, optical data from a large bandwidth can be downconverted and sampled on low frequency electronics. Second, a high …


Visual Analysis Of Extremely Dense Crowded Scenes, Haroon Idrees Jan 2014

Visual Analysis Of Extremely Dense Crowded Scenes, Haroon Idrees

Electronic Theses and Dissertations

Visual analysis of dense crowds is particularly challenging due to large number of individuals, occlusions, clutter, and fewer pixels per person which rarely occur in ordinary surveillance scenarios. This dissertation aims to address these challenges in images and videos of extremely dense crowds containing hundreds to thousands of humans. The goal is to tackle the fundamental problems of counting, detecting and tracking people in such images and videos using visual and contextual cues that are automatically derived from the crowded scenes. For counting in an image of extremely dense crowd, we propose to leverage multiple sources of information to compute …


Photo-Induced Protonation Of Polyaniline Composites And Mechanistic Study Of The Degradation Of Polychlorinated Biphenyls With Zero-Valent Magnesium, Candace Kirkland Jan 2014

Photo-Induced Protonation Of Polyaniline Composites And Mechanistic Study Of The Degradation Of Polychlorinated Biphenyls With Zero-Valent Magnesium, Candace Kirkland

Electronic Theses and Dissertations

As technology advances, a need for non-metal, conductive materials has arisen for several types of applications. Lithographic techniques are helpful to develop some of these applications. Such techniques require materials that are insulating and become conductive after irradiated. Composites of polyaniline in its emeraldine base form (PANI-EB) doped with photo-acid generators (PAG) become conductive upon photo-irradiation. This increase in conductivity is due to the protonation of PANI-EB. Such materials may be utilized to fabricate conducting patterns by photo-irradiation; however, the conductivity obtained by direct irradiation of PANI-EB/PAG composites is normally quite low (<10-3 S/cm) due to aggregation of highly loaded PAG. In this work, poly(ethylene glycol) (PEG), a proton transfer polymer, was added to PANI-EB/PAG. Results showed the addition of low molecular weight (MW) (550) PEG significantly enhanced the photo-induced conductivity to a level comparable to that of PANI-salt synthesized by oxidizing aniline in the presence of an acid. High MW (8000) PEG is less effective than PEG 550, and composites of PANI-EB and N-PEG-PANI showed conductivity as high as 102 S/cm after treatment with HCl vapor. The photo-induced conductivity of the N-PEG-PANI/PANI-EB/PAG composite reached 10-2-10-1 S/cm. Polychlorinated biphenyls (PCBs) are a class of chemicals with 209 different congeners, some of which are known carcinogens, and are persistent organic pollutants in the environment. After its synthesis, it was seen as a phenomenal additive in a multitude of different applications leading to the wide spread use of PCBs and a need for a safe, effective, and inexpensive remediation technique. While it is known that magnesium can degrade PCBs, the mechanism of this reaction was not well-understood. In order for magnesium to be broadly used as a remediation tool, it is necessary to fully understand how the reaction is taking place and if the PCBs are able to be fully dechlorinated into biphenyl. This research focuses on the hydrodechlorination of PCBs with zero-valent magnesium in acidified ethanol. The degradation pathways of 2, 2', 3, 5, 5', 6- hexachlorobiphenyl were investigated to determine the identity of the daughter PCBs produced, how and if they continue to be dechlorinated into biphenyl. The proton source for this hydrodehalogenation reaction was also studied using both deuterated solvent and acid to give more detail to the mechanism of this reaction.


Multifunctional, Multimaterial Particle Fabrication Via An In-Fiber Fluid Instability, Joshua Kaufman Jan 2014

Multifunctional, Multimaterial Particle Fabrication Via An In-Fiber Fluid Instability, Joshua Kaufman

Electronic Theses and Dissertations

Spherical micro- and nano-particles have found widespread use in many various applications from paint to cosmetics to medicine. Due to the multiplicity of desired particle material(s), structure, size range, and functionality, many approaches exist for generating such particles. Bottom-up methods such as chemical synthesis have a high yield and work with a wide range of materials; however, these processes typically lead to large polydispersity and cannot produce structured particles. Top-down approaches such as microfluidics overcome the polydispersity issue and may produce a few different structures in particles, but at lower rates and only at the micro-scale. A method that can …


Large Area Conformal Infrared Frequency Selective Surfaces, Jeffrey D'Archangel Jan 2014

Large Area Conformal Infrared Frequency Selective Surfaces, Jeffrey D'Archangel

Electronic Theses and Dissertations

Frequency selective surfaces (FSS) were originally developed for electromagnetic filtering applications at microwave frequencies. Electron-beam lithography has enabled the extension of FSS to infrared frequencies; however, these techniques create sample sizes that are seldom appropriate for real world applications due to the size and rigidity of the substrate. A new method of fabricating large area conformal infrared FSS is introduced, which involves releasing miniature FSS arrays from a substrate for implementation in a coating. A selective etching process is proposed and executed to create FSS particles from crossed-dipole and square-loop FSS arrays. When the fill-factor of the particles in the …


Theoretical And Numerical Studies Of Phase Transitions And Error Thresholds In Topological Quantum Memories, Pejman Jouzdani Jan 2014

Theoretical And Numerical Studies Of Phase Transitions And Error Thresholds In Topological Quantum Memories, Pejman Jouzdani

Electronic Theses and Dissertations

This dissertation is the collection of a progressive research on the topic of topological quantum computation and information with the focus on the error threshold of the well-known models such as the unpaired Majorana, the toric code, and the planar code. We study the basics of quantum computation and quantum information, and in particular quantum error correction. Quantum error correction provides a tool for enhancing the quantum computation fidelity in the noisy environment of a real world. We begin with a brief introduction to stabilizer codes. The stabilizer formalism of the theory of quantum error correction gives a well-defined description …


Quantitative Scanning Transmission Electron Microscopy Of Thick Samples And Of Gold And Silver Nanoparticles On Polymeric Surfaces, Aniruddha Dutta Jan 2014

Quantitative Scanning Transmission Electron Microscopy Of Thick Samples And Of Gold And Silver Nanoparticles On Polymeric Surfaces, Aniruddha Dutta

Electronic Theses and Dissertations

Transmission Electron Microscopy (TEM) is a reliable tool for chemical and structural studies of nanostructured systems. The shape, size and volumes of nanoparticles on surfaces play an important role in surface chemistry. As nanostructured surfaces become increasingly important for catalysis, protective coatings, optical properties, detection of specific molecules, and many other applications, different techniques of TEM can be used to characterize the properties of nanoparticles on surfaces to provide a path for predictability and control of these systems. This dissertation aims to provide fundamental understanding of the surface chemistry of Electroless Metallization onto Polymeric Surfaces (EMPS) through characterization with TEM. …