Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1141 - 1170 of 36527

Full-Text Articles in Physical Sciences and Mathematics

Anderson Localization Of Electromagnetic Waves In Three Dimensions, Alexey Yamilov, Sergey E. Skipetrov, Tyler W. Hughes, Momchil Minkov, Zongfu Yu, Hui Cao Jun 2023

Anderson Localization Of Electromagnetic Waves In Three Dimensions, Alexey Yamilov, Sergey E. Skipetrov, Tyler W. Hughes, Momchil Minkov, Zongfu Yu, Hui Cao

Physics Faculty Research & Creative Works

Anderson localization is a halt of diffusive wave propagation in disordered systems. Despite extensive studies over the past 40 years, Anderson localization of light in three dimensions has remained elusive, leading to the question of its very existence. Recent advances have enabled finite-difference time-domain calculations to be sped up by orders of magnitude, allowing us to conduct brute-force numerical simulations of light transport in fully disordered three-dimensional systems with unprecedented dimension and refractive index difference. We show numerically three-dimensional localization of vector electromagnetic waves in random aggregates of overlapping metallic spheres, in sharp contrast to the absence of localization for …


Limits On Leptonic Tev Emission From The Cygnus Cocoon With Swift-Xrt, David Guevel, Andrew Beardmore, Kim L. Page, Amy Lien, Ke Fang, Luigi Tibaldo, Sabrina Casanova, Petra Huentemeyer Jun 2023

Limits On Leptonic Tev Emission From The Cygnus Cocoon With Swift-Xrt, David Guevel, Andrew Beardmore, Kim L. Page, Amy Lien, Ke Fang, Luigi Tibaldo, Sabrina Casanova, Petra Huentemeyer

Michigan Tech Publications

3-ray observations of the Cygnus Cocoon, an extended source surrounding the Cygnus X star-forming region, suggest the presence of a cosmic-ray accelerator reaching energies up to a few PeV. The very-high-energy (VHE, 0.1-100 TeV) 3-ray emission may be explained by the interaction of cosmic-ray hadrons with matter inside the Cocoon, but an origin of inverse Compton radiation by relativistic electrons cannot be ruled out. Inverse Compton 3-rays at VHE are accompanied by synchrotron radiation peaked in X-rays. Hence, X-ray observations may probe the electron population and magnetic field of the source. We observed 11 fields in or near the Cygnus …


Lagrangian Displacement Field Estimators In Cosmology, Atsuhisa Ota, Hee Jong Seo, Shun Saito, Florian Beutler Jun 2023

Lagrangian Displacement Field Estimators In Cosmology, Atsuhisa Ota, Hee Jong Seo, Shun Saito, Florian Beutler

Physics Faculty Research & Creative Works

The late-time nonlinear Lagrangian displacement field is highly correlated with the initial field, so reconstructing it could enable us to extract primordial cosmological information. Our previous work [A. Ota et al., Phys. Rev. D 104, 123508 (2021)PRVDAQ2470-001010.1103/PhysRevD.104.123508] carefully studied the displacement field reconstructed from the late-time density field using the iterative method proposed by Schmittfull et al. [Phys. Rev. D 96, 023505 (2017)PRVDAQ2470-001010.1103/PhysRevD.96.023505] and found that it does not fully converge to the true, underlying displacement field (e.g., ∼8% offset at k∼0.2 h Mpc-1 at z=0.6). We also constructed the Lagrangian perturbation theory model for the reconstructed field, but the …


Dyonic Taub-Nut-Ads Space Phase Structure, Mohamed Tharwat Jun 2023

Dyonic Taub-Nut-Ads Space Phase Structure, Mohamed Tharwat

Theses and Dissertations

The Taub-NUT spacetime remains to hold many mysteries more than half a century after its discovery. The metric's controversy owes largely to the nut charge and the existence of Misner strings. Traditionally the metric is treated in the euclidean signature, this treatment hides the Misner strings. We treat the Taub-NUT spacetime with the Misner strings visible, not enforcing the time periodicity condition. We examine the phase structure belonging to three different horizon geometries. We deal with the hyperbolic, flat and spherical cases. We consider the stable phases, the phase transitions that exist between them, and find the preferable phases in …


The Applicability Of The Postmortem Submersion Interval Estimation Formula For Human Remains Found In Subtropical Aquatic Environments, Kara L. Dicomo Jun 2023

The Applicability Of The Postmortem Submersion Interval Estimation Formula For Human Remains Found In Subtropical Aquatic Environments, Kara L. Dicomo

USF Tampa Graduate Theses and Dissertations

Within the past decade, several attempts have been made to standardize a method for estimating postmortem submersion intervals (PMSI); however, the majority of these studies have focused on data from a temperate climate which cannot be taken as representative of large portions of the globe. Thus, there are large portions of the earth in which the methodology from these studies may not be able to accurately estimate PMSI which has the potential to leave investigators in these other climatic zones at a disadvantage. This presentation presents a case study into the applicability of two Total Body Scoring Systems (TADS) utilized …


Search For The Least Massive Objects In The Hyades Open Cluster With The Help Of A Wide Stellar View, Stanislav Melnikov, Karamat Mirtadjieva Jun 2023

Search For The Least Massive Objects In The Hyades Open Cluster With The Help Of A Wide Stellar View, Stanislav Melnikov, Karamat Mirtadjieva

Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

No abstract provided.


Optical Characterisation Of Holographic Diffusers And Bangerter Foils For Treatment Of Amblyopia, Matthew Hellis, Suzanne Martin, Matthew Sheehan, Kevin Murphy Jun 2023

Optical Characterisation Of Holographic Diffusers And Bangerter Foils For Treatment Of Amblyopia, Matthew Hellis, Suzanne Martin, Matthew Sheehan, Kevin Murphy

Articles

Amblyopia is a significant issue for children worldwide, and current treatment methods have drawbacks that can hinder treatment effectiveness and/or patient experience. This study proposes a new treatment method using holographic diffusers while also comparing their optical characteristics to a current treatment method (Bangerter foils). Holographic diffusers were developed by optically patterning thin polymer layers on a micron scale. Two compositions of photopolymer (acrylamide and diacetone acrylamide based) are analysed herein. Characterisation shows that holographic diffusers of either composition can achieve a wide range of on-axis intensity reductions, allowing for precise and customisable treatment levels by altering recording exposure time …


Search For Top Squarks In The Four-Body Decay Mode With Single Lepton Final States In Proton-Proton Collisions At √S = 13 Tev, A. Tumasyan Jun 2023

Search For Top Squarks In The Four-Body Decay Mode With Single Lepton Final States In Proton-Proton Collisions At √S = 13 Tev, A. Tumasyan

Department of Physics and Astronomy: Faculty Publications

A search for the pair production of the lightest supersymmetric partner of the top quark, the top squark ([]1), is presented. The search targets the four-body decay of the []1, which is preferred when the mass difference between the top squark and the lightest supersymmetric particle is smaller than the mass of the W boson. This decay mode consists of a bottom quark, two other fermions, and the lightest neutralino ( []01 ), which is assumed to be the lightest supersymmetric particle. The data correspond to an integrated luminosity of 138 fb−1 of …


Learning Neutrino Effects In Cosmology With Convolutional Neural Network, Elena Giusarma, Mauricio Reyes, Francisco Villaescusa-Navarro, Siyu He, Shirley Ho, Chang Hoon Hahn Jun 2023

Learning Neutrino Effects In Cosmology With Convolutional Neural Network, Elena Giusarma, Mauricio Reyes, Francisco Villaescusa-Navarro, Siyu He, Shirley Ho, Chang Hoon Hahn

Michigan Tech Publications

Measuring the sum of the three active neutrino masses, M ν , is one of the most important challenges in modern cosmology. Massive neutrinos imprint characteristic signatures on several cosmological observables, in particular, on the large-scale structure of the universe. In order to maximize the information that can be retrieved from galaxy surveys, accurate theoretical predictions in the nonlinear regime are needed. Currently, one way to achieve those predictions is by running cosmological numerical simulations. Unfortunately, producing those simulations requires high computational resources—several hundred to thousand core hours for each neutrino mass case. In this work, we propose a new …


Cosmological Vector Fields And Constraining The Neutrino Masses, Avery J. Tishue Jun 2023

Cosmological Vector Fields And Constraining The Neutrino Masses, Avery J. Tishue

Dartmouth College Ph.D Dissertations

In this thesis I explore two main topics: the role and consequences of cosmological vector fields, and new ideas for constraining fundamental physics with state-of-the-art experiments. These topics are disparate in content and technique but unified in their attempt to leverage novel approaches to better understand longstanding questions in cosmology. These questions, such as ``What is causing the universe to accelerate today?'' and ``What are the neutrino masses?'', underpin the modern cosmological paradigm. They play a key role in our understanding of cosmic history, the formation of structure, and the fate of our universe. Answers to or hints about these …


Optical Variability Of Green Pea Galaxies, Julissa Marie Sarmiento Jun 2023

Optical Variability Of Green Pea Galaxies, Julissa Marie Sarmiento

College of Science and Health Theses and Dissertations

In this thesis, I am investigating the optical variability of Green Pea galaxies (GPs). GPs are good analogs to high-redshift galaxies, enabling us to learn more about the first galaxies in the universe. One of their key properties is their strong emission lines, some of which indicate the presence of an active galactic nucleus (AGN). An effective way to identify AGN is to look for stochastic variability in the optical light from the galaxy. Finding AGN in these galaxies would help us learn more about the formation and evolution of the supermassive black holes that power AGN. In this thesis, …


Optical Characterization Of Isothermal Spin State Switching In An Fe(Ii) Spin Crossover Molecular And Polymer Ferroelectric Bilayer, Saeed Yazdani, Kourtney Collier, Grace Yang, Jared Phillips, Ashley Dale, Aaron Mosey, Samuel Grocki, Jian Zhang, Anne E. Shanahan, Ruihua Cheng, Peter A. Dowben Jun 2023

Optical Characterization Of Isothermal Spin State Switching In An Fe(Ii) Spin Crossover Molecular And Polymer Ferroelectric Bilayer, Saeed Yazdani, Kourtney Collier, Grace Yang, Jared Phillips, Ashley Dale, Aaron Mosey, Samuel Grocki, Jian Zhang, Anne E. Shanahan, Ruihua Cheng, Peter A. Dowben

Department of Physics and Astronomy: Faculty Publications

Using optical characterization, it is evident that the spin state of the spin crossover molecular complex [Fe{H2B(pz)2}2(bipy)] (pz = tris(pyrazol-1-1y)-borohydride, bipy = 2,2′-bipyridine) depends on the electric polarization of the adjacent polymer ferroelectric polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) thin film. The role of the PVDF-HFP thin film is significant but complex. The UV–Vis spectroscopy measurements reveals that room temperature switching of the electronic structure of [Fe{H2B(pz)2}2(bipy)] molecules in bilayers of PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] occurs as a function of ferroelectric polarization. The retention of voltage-controlled nonvolatile changes …


Constraints On The Cosmic Expansion History From Gwtc–3, R. Abbott, H. Abe, F. Acernese, K. Ackley, N. Adhikari, M. G. Benjamin, Teviet Creighton, Mario C. Diaz, F. Llamas, Soma Mukherjee, Gaukhar Nurbek, Volker Quetschke, Wenhui Wang Jun 2023

Constraints On The Cosmic Expansion History From Gwtc–3, R. Abbott, H. Abe, F. Acernese, K. Ackley, N. Adhikari, M. G. Benjamin, Teviet Creighton, Mario C. Diaz, F. Llamas, Soma Mukherjee, Gaukhar Nurbek, Volker Quetschke, Wenhui Wang

Physics and Astronomy Faculty Publications and Presentations

We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming …


Uhv-Shear-Force Acoustic Near-Field Microscopy And Its Implementation In The Study Of Confined Mesoscopic Fluids, Theodore Alex Brockman Jun 2023

Uhv-Shear-Force Acoustic Near-Field Microscopy And Its Implementation In The Study Of Confined Mesoscopic Fluids, Theodore Alex Brockman

Dissertations and Theses

The design, construction, and implementation of Shear-force Acoustic Near-Field Microscopy (SANM), operational from ultrahigh vacuum (UHV) to ambient conditions--offering a pristine environment for more reliable characterization the hydrophobic/hydrophilic wetting properties of surfaces--is presented. SANM capitalizes on its sensitivity to the evanescent near-field acoustic emissions from a mesoscopic fluid (confined between the apex of a laterally oscillating tapered nanosized probe and a flat substrate) when subjected to shear motion. This distinct capability provides direct access to the fluid’s viscoelastic response when subjected to shear interactions, in contrast to indirect measurements performed by other standard probe proximity scanning techniques. The entire …


Development Of A Particle-In-Cell/Monte Carlo Simulation For Weakly Ionized Plasmas, Xiaochuan (Chloe) Zheng, James Doyle Jun 2023

Development Of A Particle-In-Cell/Monte Carlo Simulation For Weakly Ionized Plasmas, Xiaochuan (Chloe) Zheng, James Doyle

Macalester Journal of Physics and Astronomy

A plasma is a gaseous system that contains large numbers of electrons and ions that are subject to forces produced by electric and magnetic fields. Weakly ionized plasmas, where the plasma density is much lower than the background gas density, are common in laboratory, atmospheric, and astrophysical situations. Theoretical calculations of plasma properties are challenging due to the complexity of the differential equations used to characterize fundamental physics. Particle-in-cell (PIC) simulations bypass the mathematical difficulties associated with analytic models, at the expense of more complex and time-consuming computer calculations. In this work we developed a one dimensional PIC simulation of …


Tools For Refining The Baryonic Tully-Fisher Relation, Ezra D. Wolf Jun 2023

Tools For Refining The Baryonic Tully-Fisher Relation, Ezra D. Wolf

Macalester Journal of Physics and Astronomy

This paper discusses the development of tools for galactic photometry using wise, and for reduction and analysis of 21cm galaxy spectra. These Python-based tools can then be applied to selected data in order to refine the Baryonic Tully-Fisher Relation. This relation, between baryonic mass and rotational velocity of a galaxy, proves useful for extragalactic research, particularly in calculating redshift-independent distances. While these tools could be further improved, they provide a robust process for calculation of particular galaxy characteristics.


Hydrosphere: Modeling The Planetary Structure Of Ocean Planets And Icy Moons, Karlee R. Taylor Jun 2023

Hydrosphere: Modeling The Planetary Structure Of Ocean Planets And Icy Moons, Karlee R. Taylor

Macalester Journal of Physics and Astronomy

In recent years, “water worlds” have become increasingly of interest to astrobiologists due to their high potential for habitability, as the large amount water on their surfaces is not only necessary for life, but also promises long-term climatic stability. However, also necessary for life is the exchange of chemical compounds between the geosphere and the hydrosphere - something which may be ob- structed by the presence of high pressure ices on these ocean planets and icy moons. In order to explore the habitability of bodies with various surface temperatures, water masses, and core radii, this project develops a model of …


From Experiment To Theory: Investigate The Effect Of Pump Beam Size On Photovoltaic Material Behavior, Dengyu Tu Jun 2023

From Experiment To Theory: Investigate The Effect Of Pump Beam Size On Photovoltaic Material Behavior, Dengyu Tu

Macalester Journal of Physics and Astronomy

In orde to investigate the effect of the pump beam size on an ultrafast conductivity measurement experiment, an experiment using Femto XL-500 laser and a simulation using Mathematica were performed. From the experiment data, we found that as the size of the pump beam decreases beyond certain limit, the Drude model can not accurately predict the relationship between conductivity and frequency. In addition, the simulation results corroborate with the experiment result that there is a limit for the size of the pump beam.


Machine Learning Refinements To Metallicity-Dependent Isotopic Abundances, Haoxuan Sun Jun 2023

Machine Learning Refinements To Metallicity-Dependent Isotopic Abundances, Haoxuan Sun

Macalester Journal of Physics and Astronomy

The project aims to use machine learning algorithms to fit the free parameters of an isotopic scaling model to elemental observations. The processes considered are massive star nucleosynthesis, Type Ia SNe, the s-process, the r-process, and p-isotope production. The analysis on the successful fits seeks to minimize the reduced chi squared between the model and the data. Based upon the successful refinement of the isotopic parameterized scaling model, a table providing the 287 stable isotopic abundances as a function of metallicity, separated into astrophysical processes, is useful for identifying the chemical history of them. The table provides a complete averaged …


Machine Learning Applications For Materials Science: Predicting Properties Of Two-Dimensional Magnetic Materials, Paige Stevenson Jun 2023

Machine Learning Applications For Materials Science: Predicting Properties Of Two-Dimensional Magnetic Materials, Paige Stevenson

Macalester Journal of Physics and Astronomy

We trained successful neural networks to predict the formation energy and magnetic moment of 2-dimensional ferromagnetic materials of similar structure to Cr2Ge2Te6. We collect elemental data on materials with known and unknown properties from easily accessible sources to screen for viable materials for use in future research. Random forest regressors were used to identify the most important predictors of our target qualities, which perform better on predictions of formation energy than magnetic moment. We predict the properties of 1225 materials that are candidates for further research in two-dimensional magnetism and identify several potential sources of error in our models that …


Measuring The Pulse Duration Of A Femtosecond Laser Using Intensity Autocorrelation, Ross N. Relic Jun 2023

Measuring The Pulse Duration Of A Femtosecond Laser Using Intensity Autocorrelation, Ross N. Relic

Macalester Journal of Physics and Astronomy

In this experiment, an intensity autocorrelator is set up in order to measure the pulse duration of a passively mode-locked Titanium-Sapphire laser with a power of 267mW producing femtosecond pulses. Then this measurement, as well as a measurement of the laser’s spectrum, is used to test the Uncertainty Principle. Intensity autocorrelation is a well-established technique for measuring pulse duration, and is among the more intuitive techniques for this purpose, which is why it was selected for this experiment. The experimental setup was computerized. The delay of one half of the pulse was controlled by a motorized translation stage which was …


Fabricating Perovskite Solar Cells: Fabrication Guide For Limited Lab Capabilities, Erin F. S. Leary Jun 2023

Fabricating Perovskite Solar Cells: Fabrication Guide For Limited Lab Capabilities, Erin F. S. Leary

Macalester Journal of Physics and Astronomy

Within the realm of emerging photovoltaics, Perovskite cells are one of the most intriguing technologies. Within a little over a decade, Perovskite solar cells have rivaled the efficiencies of traditional silicon solar cells and strongly outpaced other emerging photovoltaic technologies. This paper aims to show a fabrication guide for creating Perovskite solar cells in a limited lab setting. The fabrication guide created structures with strong physical reliability, but limited electrical reliability. More research is needed to ensure greater reliability and proper electrical function.


Solar Radio Bursts —Deployable Low-Band Ionosphere And Transients Experiment (Dlite) Arrays, Jonathan M. Kazor, Jason Kooi Jun 2023

Solar Radio Bursts —Deployable Low-Band Ionosphere And Transients Experiment (Dlite) Arrays, Jonathan M. Kazor, Jason Kooi

Macalester Journal of Physics and Astronomy

Solar radio bursts, phenomenon that often accompany CME, solar flares and other solar events, can be detected on earth and used in the prediction of solar weather that affects earth systems in several ways. As part of the NREIP Program supporting the Naval Research Laboratory, Remote Sensing Division, approximately ten interns participated in the analysis of data collected by DLITE and WAVES radio data. Data from DLITE is often used as a complement to data from WAVES due to differences in frequency range and resolution. The analysis helps to correlate the DLITE data with the data collected from other sources. …


Mapping The Tesseral Field Of Saturn, Aurora Hiveley Jun 2023

Mapping The Tesseral Field Of Saturn, Aurora Hiveley

Macalester Journal of Physics and Astronomy

Saturn's rotation rate is still uncertain, and while it is theorized to exhibit differential rotation much like Jupiter, this claim is somewhat disputed. By analyzing the properties of waves in the ring system of Saturn as measured by the Cassini spacecraft, we aim to provide observational evidence of this phenomenon. The results of wave analysis allow us to characterize the perturbers responsible for the production of these waves, which are believed to be mass anomalies in the interior of Saturn itself. By calculating the masses of these anomalies and attempting to pinpoint their locations inside of the planet, we provide …


Trinification With A Bi-Adjoint Higgs Field, Ross Ferguson Jun 2023

Trinification With A Bi-Adjoint Higgs Field, Ross Ferguson

Macalester Journal of Physics and Astronomy

In this paper, we propose a novel extension of the Standard Model of particle physics, based on the trinification gauge group $SU(3)_C \times SU(3)_L \times SU(3)_R$. Symmetry breaking is achieved using a bi-adjoint Higgs field (transforming under the left- and right-handed subgroups) along with a more conventional bi-triplet to ensure the correct breaking and pattern of fermion masses. To preserve a discrete $Z_2$ symmetry (T-parity), we also introduce a right-handed triplet to completely break trinification symmetry to the Standard Model. The minimization conditions and conditions for the boundedness of the potential for this model are calculated. Additionally, the Standard Model …


A High-Speed Portable Ground Heat Exchanger Model For Use In Various Energy Simulation Software, Ryan Davies, Matt Mitchell, Edwin Lee Jun 2023

A High-Speed Portable Ground Heat Exchanger Model For Use In Various Energy Simulation Software, Ryan Davies, Matt Mitchell, Edwin Lee

Macalester Journal of Physics and Astronomy

A portable component model (PCM) of a ground source heat pump system was developed and used as a test case in the creating of a PCM development framework. By developing this framework, new building energy simulation models will be able to be easily integrated into existing simulation software such as EnergyPlus and the Modelica Buildings Library. Our model uses a time responsive g-function and numerical methods to simulate ground source heat pumps for single time steps as well as long time scales. We validated our model against GHESim and GLHEPro and found that our model agrees with these two standards …


Extension Of The Lux-Zeplin Nr Background To 600 Phd, Jackson Codd Jun 2023

Extension Of The Lux-Zeplin Nr Background To 600 Phd, Jackson Codd

Macalester Journal of Physics and Astronomy

In June 2022, the LUX-ZEPLIN collaboration released its first results, with the
most precise measurements of any direct dark matter detector. The findings were
calculated using the expected spin-independent WIMP-nucleon interaction model,
which would result in small energies deposited in the detector. Therefore, the
background of non-dark interactions was calculated for events with S1 areas up to
80 phd (Aalbers et al. 2022). In order to increase the sensitivity to high energy
WIMP-nucleon interaction events, as predicted by other models, we extended the
non-dark NR background to events with S1 areas of up to 600 phd. We found a
large …


Adding Classical Novae Contribution To The Isotopic Scaling Model, Mengxi Chen Jun 2023

Adding Classical Novae Contribution To The Isotopic Scaling Model, Mengxi Chen

Macalester Journal of Physics and Astronomy

The Isotopic Scaling model(West & Heger, 2013) provides a complete average isotopic decomposition for our Milky Way as a function of metallicity and it requires an initial Solar Abundance Decomposition as a starting point. The previous Solar Abundance decomposition work is not perfect(West & Heger, 2013), since Classical Novae abundances are ignored. My research intends to improve the current solar abundance decomposition by adding Classical Novae Abundance contribution, then to update the Isotopic Scaling model.


Effectiveness Of Different Materials As Catalysts For Alkaline Water Electrolysis, Lance T. Bartol, James Doyle Jun 2023

Effectiveness Of Different Materials As Catalysts For Alkaline Water Electrolysis, Lance T. Bartol, James Doyle

Macalester Journal of Physics and Astronomy

We tested the catalytic properties of various nickel and molybdenum electrodes as potential replacements for platinum for usage in alkaline water electrolysis. After initial tests found molybdenum-based electrodes to be significantly more effective than nickel electrodes, we moved to calculate overpotentials. We found nickel electrode overpotentials at ± 10 mA current to be 939 and -960 mV. Conversely, molybdenum electrode overpotentials at the same currents were 244 and -681 mV respectively. While still significantly higher than overpotentials for platinum, these results indicate that, with more testing, molybdenum-based electrodes could eventually emerge as a cheaper, more abundant alternative to platinum electrodes.


Can The Mdcdw Condensate Withstand The Heat Of A Cold Neutron Star?, William Gyory Jun 2023

Can The Mdcdw Condensate Withstand The Heat Of A Cold Neutron Star?, William Gyory

Physics and Astronomy Faculty Publications and Presentations

The correct description of strongly interacting matter at low temperatures and moderately high densities—in particular the conditions realized inside neutron stars—is still unknown. We review some recent results on the magnetic dual chiral density wave (MDCDW) phase, a candidate phase of quark matter for this region of the QCD phase diagram. We highlight the effects of magnetic fields and temperature on the condensate, which can be explored using a high-order Ginzburg-Landau (GL) expansion. We also explain how the condensate's nontrivial topology, which arises due to the asymmetry in the lowest Landau level modes, affects its physical properties. Finally, we comment …