Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 147481 - 147510 of 302645

Full-Text Articles in Physical Sciences and Mathematics

Uniform Yolk-Shell Iron Sulfide-Carbon Nanospheres For Superior Sodium-Iron Sulfide Batteries, Yunxiao Wang, Jianping Yang, Shulei Chou, Hua-Kun Liu, Weixian Zhang, Dongyuan Zhao, S X. Dou Jan 2015

Uniform Yolk-Shell Iron Sulfide-Carbon Nanospheres For Superior Sodium-Iron Sulfide Batteries, Yunxiao Wang, Jianping Yang, Shulei Chou, Hua-Kun Liu, Weixian Zhang, Dongyuan Zhao, S X. Dou

Australian Institute for Innovative Materials - Papers

Sodium-metal sulfide battery holds great promise for sustainable and cost-effective applications. Nevertheless, achieving high capacity and cycling stability remains a great challenge. Here, uniform yolk-shell iron sulfide-carbon nanospheres have been synthesized as cathode materials for the emerging sodium sulfide battery to achieve remarkable capacity of ∼545 mA h g-1 over 100 cycles at 0.2 C (100 mA g-1), delivering ultrahigh energy density of ∼438 Wh kg-1. The proven conversion reaction between sodium and iron sulfide results in high capacity but severe volume changes. Nanostructural design, including of nanosized iron sulfide yolks (∼170 nm) with porous carbon shells (∼30 nm) and …


Development And Characterization Of Novel Hybrid Hydrogel Fibers, Azadeh Mirabedini, Javad Foroughi, Anthony C. Romeo, Gordon G. Wallace Jan 2015

Development And Characterization Of Novel Hybrid Hydrogel Fibers, Azadeh Mirabedini, Javad Foroughi, Anthony C. Romeo, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Biopolymeric continuous core-sheath fibres, with an inner core of chitosan and alginate as the sheath, were fabricated for the first time without using a template. Hereby, the necessary conditions to achieve chitosan-alginate core-sheath fibre via a wet-spinning process are presented. SEM micrographs show the cylinder-shaped monofilament structure of the chitosan core surrounded by the alginate sheath. The coaxial fibres exhibit a 260% increase in ultimate stress and more than 300% enhancement in the Young's modulus compared to the alginate counterpart. Release profiles from the coaxial fibre were determined using a model component. The obtained results suggest that the fibres are …


Effects Of Nanostructure On Clean Energy: Big Solutions Gained From Small Features, Jinyan Xiong, Chao Han, Zhen Li, S X. Dou Jan 2015

Effects Of Nanostructure On Clean Energy: Big Solutions Gained From Small Features, Jinyan Xiong, Chao Han, Zhen Li, S X. Dou

Australian Institute for Innovative Materials - Papers

The increasing energy consumption and environmental concerns have driven the development of cost-effective, high-efficiency clean energy. Advanced functional nanomaterials and relevant nanotechnologies are playing a crucial role and showing promise in resolving some energy issues. In this view, we focus on recent advances of functional nanomaterials in clean energy applications, including solar energy conversion, water splitting, photodegradation, electrochemical energy conversion and storage, and thermoelectric conversion, which have attracted considerable interests in the regime of clean energy.


Tuning The Conductance Of H2o@C60 By Position Of The Encapsulated H2o, Chengbo Zhu, Xiaolin Wang Jan 2015

Tuning The Conductance Of H2o@C60 By Position Of The Encapsulated H2o, Chengbo Zhu, Xiaolin Wang

Australian Institute for Innovative Materials - Papers

The change of conductance of single-molecule junction in response to various external stimuli is the fundamental mechanism for the single-molecule electronic devices with multiple functionalities. We propose the concept that the conductance of molecular systems can be tuned from inside. The conductance is varied in C60 with encapsulated H2O, H2O@C60. The transport properties of the H2O@ C60-based nanostructure sandwiched between electrodes are studied using first-principles calculations combined with the non-equilibrium Green's function formalism. Our results show that the conductance of the H2O@C60 is sensitive to the position of the H2O and its dipole direction inside the cage with changes in …


Edge-Hydroxylated Boron Nitride Nanosheets As An Effective Additive To Improve The Thermal Response Of Hydrogels, Feng Xiao, Sina Naficy, Gilberto Casillas, Majharu Haque Khan, Tomas Katkus, Lei Jiang, Hua-Kun Liu, Huijun Li, Zhenguo Huang Jan 2015

Edge-Hydroxylated Boron Nitride Nanosheets As An Effective Additive To Improve The Thermal Response Of Hydrogels, Feng Xiao, Sina Naficy, Gilberto Casillas, Majharu Haque Khan, Tomas Katkus, Lei Jiang, Hua-Kun Liu, Huijun Li, Zhenguo Huang

Australian Institute for Innovative Materials - Papers

Upon flowing hot steam over hexagonal boron nitride (h-BN) bulk powder, efficient exfoliation and hydroxylation of BN occur simultaneously. Through effective hydrogen bonding with water and N-isopropylacrylamide, edge-hydroxylated BN nanosheets dramatically improve the dimensional change and dye release of this temperature-sensitive hydrogel and thereby enhance its efficacy in bionic, soft robotic, and drug-delivery applications.


Growth Of Mos2@C Nanobowls As A Lithium-Ion Battery Anode Material, Chunyu Cui, Xiu Li, Zhe Hu, Jiantie Xu, Hua-Kun Liu, Jianmin Ma Jan 2015

Growth Of Mos2@C Nanobowls As A Lithium-Ion Battery Anode Material, Chunyu Cui, Xiu Li, Zhe Hu, Jiantie Xu, Hua-Kun Liu, Jianmin Ma

Australian Institute for Innovative Materials - Papers

Layered MoS2 has attracted much attention as a promising anode material for lithium ion batteries. The intrinsically poor electrical/ionic conductivity, volume expansion and pulverization, stress accumulation and unstable solid-electrolyte interface formation within MoS2 electrodes during the lithiation-delithiation process significantly result in their fast capacity fading, poor rate capability and cycle life. To address these critical issues, a novel nanobowl structure for MoS2 with a carbon coating (MoS2@C-400, 500, 600) is successfully fabricated by a facile solvothermal method, followed by a post-annealing process. The fabricated MoS2@C-600 and MoS2@C-500 exhibited high reversible capacities of 1164.4 and 1076.4 mA h g-1 at 0.2C, …


A Simple And Versatile Method For Microencapsulation Of Anti-Epileptic Drugs For Focal Therapy Of Epilepsy, Yu Chen, Zhilian Yue, Simon E. Moulton, Patricia Y. Hayes, Mark J. Cook, Gordon G. Wallace Jan 2015

A Simple And Versatile Method For Microencapsulation Of Anti-Epileptic Drugs For Focal Therapy Of Epilepsy, Yu Chen, Zhilian Yue, Simon E. Moulton, Patricia Y. Hayes, Mark J. Cook, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Nearly 30% of epilepsy cases cannot be adequately controlled with current medical treatments. The reasons for this are still not well understood, but there is a significant body of evidence pointing to the blood-brain barrier. Resective surgery can provide an alternative method of epilepsy control; however this treatment option is not suitable for most epilepsy sufferers. Local drug delivery through micro-injection to or implantation into the brain provides an innovative approach to bypass the blood-brain barrier for epilepsy treatment. In order to develop effective local delivery systems for anti-epilepsy drug (AED), we have prepared a variety of core-shell microcapsules via …


Improving Fault Ride-Through Capability Of Dfig Based Wind Generators By Using Bridge-Type Superconducting Fault Current Limiter, Mehrdad Tarafdar Hagh, Kashem M. Muttaqi, Danny Sutanto, Md Shahriar Hossain, Ahmed M. Haidar Jan 2015

Improving Fault Ride-Through Capability Of Dfig Based Wind Generators By Using Bridge-Type Superconducting Fault Current Limiter, Mehrdad Tarafdar Hagh, Kashem M. Muttaqi, Danny Sutanto, Md Shahriar Hossain, Ahmed M. Haidar

Australian Institute for Innovative Materials - Papers

This paper proposes series connection of a diode bridge-type superconducting fault current limiter (SFCL) with rotor side converter (RSC) of a double fed induction generator (DFIG) based wind turbine. The proposed SFCL improves the fault ride through (FRT) capability of DFIG and prevents the RSC from damaging fault currents. Because of using superconductor DC coil, there is not any power loss during fault or normal operation of system. The proposed SFCL does not have any considerable affect in wind turbine's operation during normal condition. It is not necessary to use any measurement and control systems, too. The SFCL returns to …


In Situ Anchoring Uniform Mno2 Nanosheets On Three-Dimensional Macroporous Graphene Thin-Films For Supercapacitor Electrodes, Yong Zhao, Yuena Meng, Haiping Wu, Yue Wang, Zhixiang Wei, Xiaojun Li, Peng Jiang Jan 2015

In Situ Anchoring Uniform Mno2 Nanosheets On Three-Dimensional Macroporous Graphene Thin-Films For Supercapacitor Electrodes, Yong Zhao, Yuena Meng, Haiping Wu, Yue Wang, Zhixiang Wei, Xiaojun Li, Peng Jiang

Australian Institute for Innovative Materials - Papers

We present a facile and efficient fabrication of 3D macroporous rGO/MnO2 nanosheet thin-films for supercapacitor electrodes. An amorphous-carbon-modified rGO thin-film is firstly prepared through a simple glucose and CaCO3 particle mediated template method. Then ultrathin MnO2 nanosheets are in situ synthesized on the rGO networks by the rapid and scalable redox reaction between KMnO4 and amorphous carbon. The fabricated three-dimensional porous hybrid thin-film shows a high specific capacitance of 245 F g-1 (based on the total mass of the film) at a scan rate of 2 mV s-1, a good rate capability of 143 F g-1 at 300 mV s-1, …


Integration Of Mno@Graphene With Graphene Networks Towards Li-Ion Battery Anodes, Wei Guo, Xiu Li, Dickon Ng, Jianmin Ma Jan 2015

Integration Of Mno@Graphene With Graphene Networks Towards Li-Ion Battery Anodes, Wei Guo, Xiu Li, Dickon Ng, Jianmin Ma

Australian Institute for Innovative Materials - Papers

In this work, we have directly integrated MnO@graphene with graphene networks through the thermal decomposition of a Mn-oleate complex in an Ar atmosphere at high temperatures. By introducing dual protective graphene shells and networks, the as-synthesized MnO/graphene composites exhibited superior cycling performance.


Increased Upconversion Performance For Thin Film Solar Cells: A Trimolecular Composition, Yuen Yap Cheng, Andrew Nattestad, Tim F. Schulze, Rowan W. Macqueen, Burkhard Fückel, Klaus Lips, Gordon G. Wallace, Tony Khoury, Maxwell J. Crossley, Timothy W. Schmidt Jan 2015

Increased Upconversion Performance For Thin Film Solar Cells: A Trimolecular Composition, Yuen Yap Cheng, Andrew Nattestad, Tim F. Schulze, Rowan W. Macqueen, Burkhard Fückel, Klaus Lips, Gordon G. Wallace, Tony Khoury, Maxwell J. Crossley, Timothy W. Schmidt

Australian Institute for Innovative Materials - Papers

Photochemical upconversion based on triplet-triplet annihilation (TTA-UC) is employed to enhance the short-circuit currents generated by two varieties of thin-film solar cells, a hydrogenated amorphous silicon (a-Si:H) solar cell and a dye-sensitized solar cell (DSC). TTA-UC is exploited to harvest transmitted sub-bandgap photons, combine their energies and re-radiate upconverted photons back towards the solar cells. In the present study we employ a dual-emitter TTA-UC system which allows for significantly improved UC quantum yields as compared to the previously used single-emitter TTA systems. In doing so we achieve record photo-current enhancement values for both the a-Si:H device and the DSC, surpassing …


Nanocomposite Hydrogels: Fracture Toughness And Energy Dissipation Mechanisms, Andrea Klein, Philip G. Whitten, Katharina Resch, Gerald Pinter Jan 2015

Nanocomposite Hydrogels: Fracture Toughness And Energy Dissipation Mechanisms, Andrea Klein, Philip G. Whitten, Katharina Resch, Gerald Pinter

Australian Institute for Innovative Materials - Papers

In this study, fracture toughness of nanocomposite hydrogels is quantified, and active mechanisms for dissipation of energy of nanocomposite hydrogels are ascertained. Poly(N,N-dimethylacrylamide) nanocomposite hydrogels are prepared by in situ free radical polymerization with the incorporation of Laponite, a hectorite synthetic clay. Transmission electron microscopy proves exfoliation of clay platelets that serve as multifunctional crosslinkers in the created physical network. Extraordinary high fracture energies of up to 6800 J m-2 are determined by the pure shear test approach, which shows that these soft and stretchable hydrogels are insensitive to notches. In contrast to single- and double-network hydrogels, dynamic mechanic analysis …


Porous Agpd-Pd Composite Nanotubes As Highly Efficient Electrocatalysts For Lithium-Oxygen Batteries, Wenbin Luo, Xuanwen Gao, Shulei Chou, Jiazhao Wang, Hua-Kun Liu Jan 2015

Porous Agpd-Pd Composite Nanotubes As Highly Efficient Electrocatalysts For Lithium-Oxygen Batteries, Wenbin Luo, Xuanwen Gao, Shulei Chou, Jiazhao Wang, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Porous AgPd-Pd composite nanotubes (NTs) are used as an efficient bifunctional catalyst for the oxygen reduction and evolution reactions in lithium-oxygen batteries. The porous NT structure can facilitate rapid O2 and electrolyte diffusion through the NTs and provide abundant catalytic sites, forming a continuous conductive network throughout the entire energy conversion process, with excellent cycling performance.


Inkjet-Printed Alginate Microspheres As Additional Drug Carriers For Injectable Hydrogels, Johnson Chung, Sina Naficy, Gordon G. Wallace, Stephen O'Leary Jan 2015

Inkjet-Printed Alginate Microspheres As Additional Drug Carriers For Injectable Hydrogels, Johnson Chung, Sina Naficy, Gordon G. Wallace, Stephen O'Leary

Australian Institute for Innovative Materials - Papers

Local delivery of bioactive molecules to the inner ear via diffusion through the round window membrane is becoming an attractive approach to treat sensorineural hearing loss compared to systemic drug administration. Pluronics® (Lutrol F127) are a class of thermosensitive hydrogels that remain liquid prior to injection and rapidly gel under physiological conditions. They are, however, limited to short-term drug release due to rapid hydrolysis in aqueous solution. Therefore, the aim of this study was to investigate an approach, using an ink-jet printing system, to sustain the drug release by incorporating hydrogel microspheres within Lutrol F127. Various concentrations of Lutrol F127 …


3d Printing - To Print Or Not To Print? Aspects To Consider Before Adoption - A Supply Chain Perspective, Brogan Rylands, Tillman Bohme, Robert A. Gorkin Iii, Joshua P. Fan, Thomas Birtchnell Jan 2015

3d Printing - To Print Or Not To Print? Aspects To Consider Before Adoption - A Supply Chain Perspective, Brogan Rylands, Tillman Bohme, Robert A. Gorkin Iii, Joshua P. Fan, Thomas Birtchnell

Australian Institute for Innovative Materials - Papers

3D printing is believed by many to be the next industrial revolution. The technology is already deployed in production. However, supply chain literature is still in its infancy regarding this topic, despite 3D printings radical impact on supply chains. A framework has been developed to assess various aspects that need to be considered when deploying such technology as part of the production process. Literature has been drawn from cross-discipline (e.g. social sciences, engineering, and business). The challenge for businesses will be whether to incur the cost impact today or the opportunity cost of tomorrow if 3D printing is not adopted.


High-Performance Flexible All-Solid-State Supercapacitor From Large Free-Standing Graphene-Pedot/Pss Films, Yuqing Liu, Bo Weng, Joselito M. Razal, Qun Xu, Chen Zhao, Yuyang Hou, Shayan Seyedin, Rouhollah Jalili, Gordon G. Wallace, Jun Chen Jan 2015

High-Performance Flexible All-Solid-State Supercapacitor From Large Free-Standing Graphene-Pedot/Pss Films, Yuqing Liu, Bo Weng, Joselito M. Razal, Qun Xu, Chen Zhao, Yuyang Hou, Shayan Seyedin, Rouhollah Jalili, Gordon G. Wallace, Jun Chen

Australian Institute for Innovative Materials - Papers

Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm-2 was achieved at a scan rate of 10 mV s-1 using the composite electrode with a high mass loading (8.49 mg …


Yolk-Shell Silicon-Mesoporous Carbon Anode With Compact Solid Electrolyte Interphase Film For Superior Lithium-Ion Batteries, Jianping Yang, Yunxiao Wang, Shulei Chou, Renyuan Zhang, Yanfei Xu, Jianwei Fan, Weixian Zhang, Hua-Kun Liu, Dongyuan Zhao, S X. Dou Jan 2015

Yolk-Shell Silicon-Mesoporous Carbon Anode With Compact Solid Electrolyte Interphase Film For Superior Lithium-Ion Batteries, Jianping Yang, Yunxiao Wang, Shulei Chou, Renyuan Zhang, Yanfei Xu, Jianwei Fan, Weixian Zhang, Hua-Kun Liu, Dongyuan Zhao, S X. Dou

Australian Institute for Innovative Materials - Papers

Silicon as an electrode suffers from short cycling life, as well as unsatisfactory rate-capability caused by the large volume expansion (~400%) and the consequent structural degradation during lithiation/delithiation processes. Here, we have engineered unique void-containing mesoporous carbon-encapsulated commercial silicon nanoparticles (NPs) in yolk-shell structures. In this design, the silicon NPs yolk are wrapped into open and accessible mesoporous carbon shells, the void space between yolk and shell provides enough room for Si expansion, meanwhile, the porosity of carbon shell enables fast transport of Li+ ions between electrolyte and silicon. Our ex-situ characterization clearly reveals for the first time that a …


Porous Nanoarchitectures Of Spinel-Type Transition Metal Oxides For Electrochemical Energy Storage Systems, Min-Sik Park, Jeonghun Kim, Ki Jae Kim, Jongwon Lee, Jung Ho Kim, Yusuke Yamauchi Jan 2015

Porous Nanoarchitectures Of Spinel-Type Transition Metal Oxides For Electrochemical Energy Storage Systems, Min-Sik Park, Jeonghun Kim, Ki Jae Kim, Jongwon Lee, Jung Ho Kim, Yusuke Yamauchi

Australian Institute for Innovative Materials - Papers

Transition metal oxides possessing two kinds of metals (denoted as AxB3-xO4, which is generally defined as a spinel structure; A, B = Co, Ni, Zn, Mn, Fe, etc.), with stoichiometric or even non-stoichiometric compositions, have recently attracted great interest in electrochemical energy storage systems (ESSs). The spinel-type transition metal oxides exhibit outstanding electrochemical activity and stability, and thus, they can play a key role in realising cost-effective and environmentally friendly ESSs. Moreover, porous nanoarchitectures can offer a large number of electrochemically active sites and, at the same time, facilitate transport of charge carriers (electrons and ions) during energy storage reactions. …


Self-Growth Of Centimeter-Scale Single Crystals By Normal Sintering Process In Modified Potassium Sodium Niobate Ceramics, Cheol-Woo Ahn, Ho-Yong Lee, Guifang Han, Shujun Zhang, Si-Young Choi, Jong-Jin Choi, Jong-Woo Kim, Woon-Ha Yoon, Joon-Hwan Choi, Dong-Soo Park, Byung-Dong Hahn, Jungho Ryu Jan 2015

Self-Growth Of Centimeter-Scale Single Crystals By Normal Sintering Process In Modified Potassium Sodium Niobate Ceramics, Cheol-Woo Ahn, Ho-Yong Lee, Guifang Han, Shujun Zhang, Si-Young Choi, Jong-Jin Choi, Jong-Woo Kim, Woon-Ha Yoon, Joon-Hwan Choi, Dong-Soo Park, Byung-Dong Hahn, Jungho Ryu

Australian Institute for Innovative Materials - Papers

In this manuscript, an interesting phenomenon is reported. That is the self-growth of single crystals in Pb-free piezoelectric ceramics. These crystals are several centimeters in size. They are grown without any seed addition through a normal sintering process in modified potassium sodium niobate ceramics. It has been achieved by the composition designed to compensate the Na + loss which occurs during the liquid phase sintering. The composition of the crystals is (K0.4925 Na0.4925-x Ba0.015+x/2)Nb 0.995+x O3 [x is determined by the Na+ loss, due to Na2O volatilization]. These crystals have high piezoelectric voltage coefficients (g33, 131 10-3 Vm/N), indicating that …


A New Strategy For Achieving A High Performance Anode For Lithium Ion Batteries-Encapsulating Germanium Nanoparticles In Carbon Nanoboxes, Dan Li, Hongqiang Wang, Hua-Kun Liu, Zaiping Guo Jan 2015

A New Strategy For Achieving A High Performance Anode For Lithium Ion Batteries-Encapsulating Germanium Nanoparticles In Carbon Nanoboxes, Dan Li, Hongqiang Wang, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

A novel strategy to improve the electrochemical performance of a germanium anode is proposed via encapsulating germanium nanoparticles in carbon nanoboxes by carbon coating the precursor, germanium dioxide cubes, and then subjecting them to a reduction treatment. The complete and robust carbon boxes are shown to not only provide extra void space for the expansion of germanium nanoparticles after lithium insertion but also offer a large reactive area and reduced distance for the lithium diffusion. Furthermore, the thus-obtained composite, composed of densely stacked carbon nanoboxes encapsulating germanium nanoparticles (germanium at carbon cubes (Ge at CC)), exhibits a high tap density …


Role Of Anions On Structure And Pseudocapacitive Performance Of Metal Double Hydroxides Decorated With Nitrogen-Doped Graphene, Nasir Mahmood, Muhammad Nawaz Tahir, Asif Mahmood, Wenlong Yang, Xingxing Gu, Chuanbao Cao, Yawen Zhang, Yanglong Hou Jan 2015

Role Of Anions On Structure And Pseudocapacitive Performance Of Metal Double Hydroxides Decorated With Nitrogen-Doped Graphene, Nasir Mahmood, Muhammad Nawaz Tahir, Asif Mahmood, Wenlong Yang, Xingxing Gu, Chuanbao Cao, Yawen Zhang, Yanglong Hou

Australian Institute for Innovative Materials - Papers

Electrochemical capacitors (EC) bear faster charge-discharge; however, their real applications are still on a long away due to lower capacitance and energy densities which mainly arise from simple surface charge accumulation or/and reaction. Here, a novel synthesis strategy was designed to obtain the purposeful hybrids of nickel cobalt double hydroxide (NiCoDH) with genetic morphology to improve their electrochemical performance as electrode of EC. Nanostructures of metal hydroxides were grown on t he nitrogen-doped graphene (NG) sheets by utilizing defects as nucleation sites and their composition was optimized both by tuning the ratio of Ni:Co as well as the counter halogen …


Gold Nanocrystals With Variable Index Facets As Highly Effective Cathode Catalysts For Lithium-Oxygen Batteries, Dawei Su, S X. Dou, Guoxiu Wang Jan 2015

Gold Nanocrystals With Variable Index Facets As Highly Effective Cathode Catalysts For Lithium-Oxygen Batteries, Dawei Su, S X. Dou, Guoxiu Wang

Australian Institute for Innovative Materials - Papers

Cathode catalysts are the key factor in improving the electrochemical performance of lithium-oxygen (Li-O2) batteries via their promotion of the oxygen reduction and oxygen evolution reactions (ORR and OER). Generally, the catalytic performance of nanocrystals (NCs) toward ORR and OER depends on both composition and shape. Herein, we report the synthesis of polyhedral Au NCs enclosed by a variety of index facets: cubic gold (Au) NCs enclosed by {100} facets; truncated octahedral Au NCs enclosed by {100} and {110} facets; and trisoctahedral (TOH) Au NCs enclosed by 24 high-index {441} facets, as effective cathode catalysts for Li-O2 batteries. All Au …


Large-Scale Synthesis Of Ordered Mesoporous Carbon Fiber And Its Application As Cathode Material For Lithium-Sulfur Batteries, Hongqiang Wang, Chaofeng Zhang, Zhixin Chen, Hua-Kun Liu, Zaiping Guo Jan 2015

Large-Scale Synthesis Of Ordered Mesoporous Carbon Fiber And Its Application As Cathode Material For Lithium-Sulfur Batteries, Hongqiang Wang, Chaofeng Zhang, Zhixin Chen, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

A novel type of one-dimensional ordered mesoporous carbon fiber has been prepared via the electrospinning technique by using resol as the carbon source and triblock copolymer Pluronic F127 as the template. Sulfur is then encapsulated in this ordered mesoporous carbon fibers by a simple thermal treatment. The interwoven fibrous nanostructure has favorably mechanical stability and can provide an effective conductive network for sulfur and polysulfides during cycling. The ordered mesopores can also restrain the diffusion of long-chain polysulfides. The resulting ordered mesoporous carbon fiber sulfur (OMCF-S) composite with 63% S exhibits high reversible capacity, good capacity retention and enhanced rate …


One-Dimensional Manganese-Cobalt Oxide Nanofibres As Bi-Functional Cathode Catalysts For Rechargeable Metal-Air Batteries, Kyu-Nam Jung, Soomin Hwang, Min-Sik Park, Ki Jae Kim, Jae-Geun Kim, S X. Dou, Jung Ho Kim, Jongwon Lee Jan 2015

One-Dimensional Manganese-Cobalt Oxide Nanofibres As Bi-Functional Cathode Catalysts For Rechargeable Metal-Air Batteries, Kyu-Nam Jung, Soomin Hwang, Min-Sik Park, Ki Jae Kim, Jae-Geun Kim, S X. Dou, Jung Ho Kim, Jongwon Lee

Australian Institute for Innovative Materials - Papers

Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the …


Porous Amorphous Ge/C Composites With Excellent Electrochemical Properties, Xiu Li, Wei Guo, Qian Wan, Jianmin Ma Jan 2015

Porous Amorphous Ge/C Composites With Excellent Electrochemical Properties, Xiu Li, Wei Guo, Qian Wan, Jianmin Ma

Australian Institute for Innovative Materials - Papers

Porous amorphous germanium/carbon (Ge/C) composites, which were synthesized through the reduction/carbonization of germanium oxide/oleic acid precursors, could exhibit a high-capacity, high-rate and long-life performance due to the synergistic effect of the porous structure and carbon.


Electrical Stimulation Using Conductive Polymer Polypyrrole Promotes Differentiation Of Human Neural Stem Cells: A Biocompatible Platform For Translational Neural Tissue Engineering, Elise Stewart, Nao R. Kobayashi, Michael J. Higgins, Anita Quigley, Sina S. Jamali, Simon Moulton, Robert M. I Kapsa, Gordon G. Wallace, Jeremy M. Crook Jan 2015

Electrical Stimulation Using Conductive Polymer Polypyrrole Promotes Differentiation Of Human Neural Stem Cells: A Biocompatible Platform For Translational Neural Tissue Engineering, Elise Stewart, Nao R. Kobayashi, Michael J. Higgins, Anita Quigley, Sina S. Jamali, Simon Moulton, Robert M. I Kapsa, Gordon G. Wallace, Jeremy M. Crook

Australian Institute for Innovative Materials - Papers

Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation, and conductive scaffolds for cell support and tissue engineering. Here we demonstrate the utility of electroactive CP Polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and …


Split-Half-Tubular Polypyrrole@Sulfur@Polypyrrole Composite With A Novel Three-Layer-3d Structure As Cathode For Lithium/Sulfur Batteries, Xin Liang, Mingang Zhang, Mohammad Kaiser, Xuanwen Gao, Konstantin Konstantinov, Richard Tandiono, Zhaoxiang Wang, Hua-Kun Liu, S X. Dou, Jiazhao Wang Jan 2015

Split-Half-Tubular Polypyrrole@Sulfur@Polypyrrole Composite With A Novel Three-Layer-3d Structure As Cathode For Lithium/Sulfur Batteries, Xin Liang, Mingang Zhang, Mohammad Kaiser, Xuanwen Gao, Konstantin Konstantinov, Richard Tandiono, Zhaoxiang Wang, Hua-Kun Liu, S X. Dou, Jiazhao Wang

Australian Institute for Innovative Materials - Papers

Polypyrrole@Sulfur@Polypyrrole composite with a novel three-layer-3D-structure, which consists of an external polypyrrole coating layer, an intermediate sulfur filling layer, and an internal polypyrrole split-half-tube conducting matrix layer, has been synthesized by the oxidative chemical polymerization method and chemical precipitation method in this article. Due to this unique three-layer-structure, the discharge specific capacity of Polypyrrole@Sulfur@Polypyrrole composite cathode retained at 554mAh g-1 after 50 cycles, which represents 68.8% retention of the initial discharge specific capacity. In comparison, the Sulfur@Polypyrrole composite cathode, with the same components as Polypyrrole@Sulfur@Polypyrrole composite, but without the three-layer-structure, has the discharge specific capacity of 370mAh g-1 after 50 …


Processable Conducting Graphene/Chitosan Hydrogels For Tissue Engineering, Sepidar Sayyar, Eoin Murray, Brianna Thompson, Johnson Chung, David L. Officer, Sanjeev Gambhir, Geoffrey M. Spinks, Gordon G. Wallace Jan 2015

Processable Conducting Graphene/Chitosan Hydrogels For Tissue Engineering, Sepidar Sayyar, Eoin Murray, Brianna Thompson, Johnson Chung, David L. Officer, Sanjeev Gambhir, Geoffrey M. Spinks, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Composites of graphene in a chitosan-lactic acid matrix were prepared to create conductive hydrogels that are processable, exhibit tunable swelling properties and show excellent biocompatibility. The addition of graphene to the polymer matrix also resulted in significant improvements to the mechanical strength of the hydrogels, with the addition of just 3 wt% graphene resulting in tensile strengths increasing by over 200%. The composites could be easily processed into three-dimensional scaffolds with finely controlled dimensions using additive fabrication techniques and fibroblast cells demonstrate good adhesion and growth on their surfaces. These chitosan-graphene composites show great promise for use as conducting substrates …


Superior Intrinsic Thermoelectric Performance With Zt Of 1.8 In Single-Crystal And Melt-Quenched Highly Dense Cu2-Xse Bulks, Lanling Zhao, Xiaolin Wang, Ji-Yang Wang, Zhenxiang Cheng, S X. Dou, Jun Wang, L Liu Jan 2015

Superior Intrinsic Thermoelectric Performance With Zt Of 1.8 In Single-Crystal And Melt-Quenched Highly Dense Cu2-Xse Bulks, Lanling Zhao, Xiaolin Wang, Ji-Yang Wang, Zhenxiang Cheng, S X. Dou, Jun Wang, L Liu

Australian Institute for Innovative Materials - Papers

Practical applications of the high temperature thermoelectric materials developed so far are partially obstructed by the costly and complicated fabrication process. In this work, we put forward two additional important properties for thermoelectric materials, high crystal symmetry and congruent melting. We propose that the recently discovered thermoelectric material Cu2-xSe, with figure of merit, zT, over 1.5 at T of ~ 1000 K, should meet these requirements, based on our analysis of its crystal structure and the Cu-Se binary phase diagram. We found that its excellent thermoelectric performance is intrinsic, and less dependent on grain size, while highly dense samples can …


Poly(3,4-Ethylenedioxythiophene): Dextran Sulfate (Pedot: Ds) - A Highly Processable Conductive Organic Biopolymer, David Harman, Robert Gorkin Iii, Leo Stevens, Brianna Thompson, Klaudia Wagner, Bo Weng, Johnson Chung, Marc In Het Panhuis, Gordon G. Wallace Jan 2015

Poly(3,4-Ethylenedioxythiophene): Dextran Sulfate (Pedot: Ds) - A Highly Processable Conductive Organic Biopolymer, David Harman, Robert Gorkin Iii, Leo Stevens, Brianna Thompson, Klaudia Wagner, Bo Weng, Johnson Chung, Marc In Het Panhuis, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

A novel water-dispersible conducting polymer analogous to poly(3,4-dioxythiophene):polystyrene sulfonate (PEDOT:PSS) has been chemically synthesized in a single reaction in high yield. PEDOT:DS, a new member of the polythiophene family, is composed of a complex between PEDOT and the sulfonated polysaccharide polyanion dextran sulfate. Drop-cast films of aqueous suspensions of the material display a native conductivity of up to 7 ± 1 S cm-1, increasing to 20 ± 2 S cm-1 after treatment with ethylene glycol and thermal annealing. Mass ratios of the precursors NaDS and EDOT were varied from 5:1 to 2:1 and a decrease in the …